Lecture 5

Red-Black Trees, Height Bound, Insertion

Source: Introduction to Algorithms, CLRS
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Claim: In any RB-tree, every subtree rooted at any node, say x, contains at least 27" — 1

internal nodes.

Proof: Will do induction on the height of the nodes.

Basis Step: For nodes of height 0, i.e., NIL node, the claim is trivially true as:
e bh(x) =0

e Subtree at NIL node contains 0 = 2V — 1 internal nodes.
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We can perform the same operations on RB-Trees as we did on BSTs:

® |nsert an element. —
— Require care

® Delete an element.

® Search for an element with the key k.
® Minimum or Maximum of the set.

® Successor or Predecessor of an element of the set.
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Rotations are basic operations usetul in Insertion and Deletion on an RB-tree:

Right-rotate(T7, y)

() — O

Left-rotate(7, x)

o p p y

Note: Rotations do not disturb BST property and can be performed in constant time.
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Suppose we want to insert 19 in the following RB-tree:

20

Colour the newly inserted node

«——  redand then do fix-up.
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RB-Trees: Insertion

Two stages of insertion:

® |nsert the new node as itis done in a BST and colour the new node red.

® Do fix-ups as parent of the new node may also be a red node.



