

Lecture 5

Red-Black Trees, Height Bound, Insertion

Source: Introduction to Algorithms, CLRS

RB-Trees: Black Height

RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf,

RB-Trees: Black Height

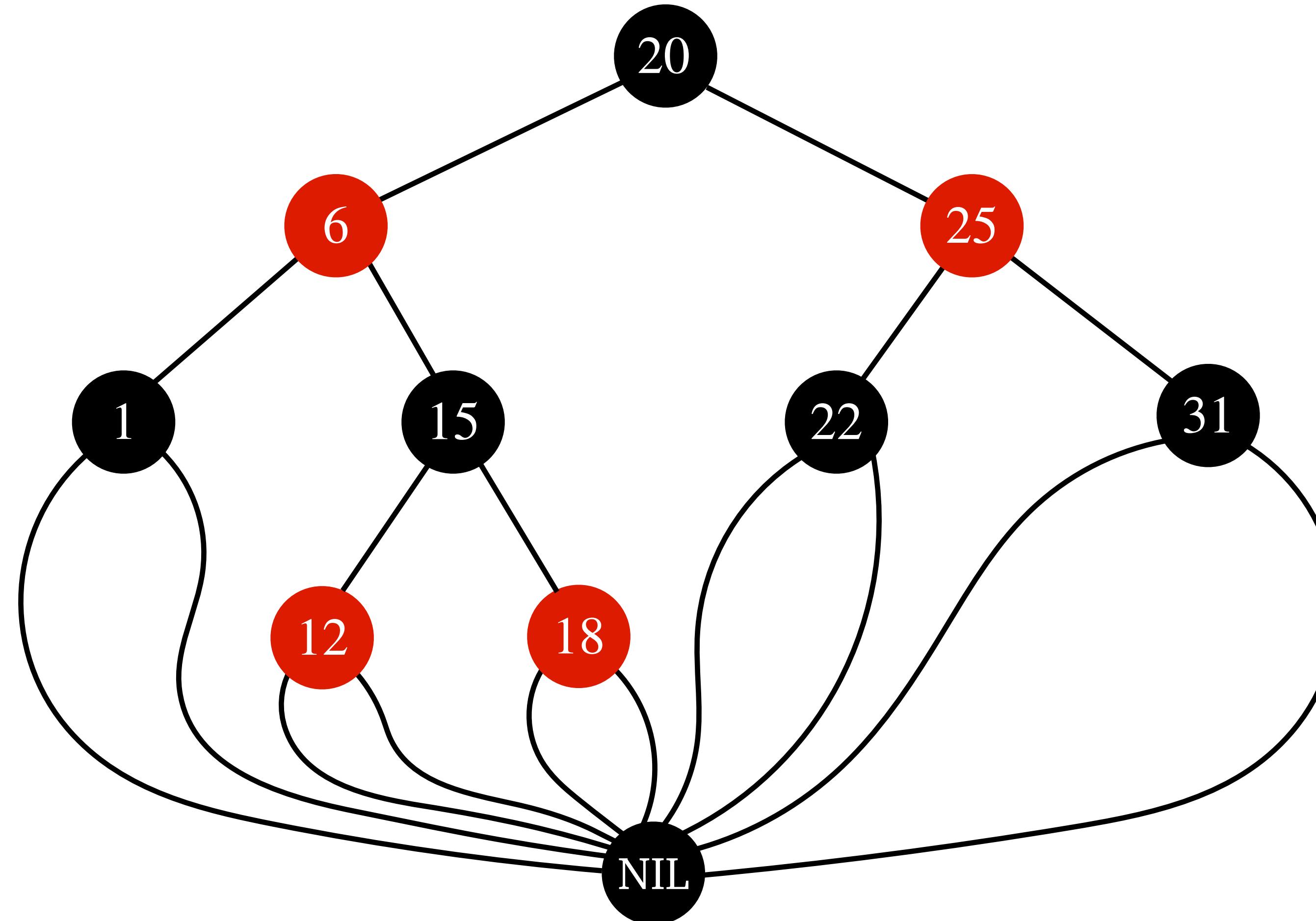
Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x ,

RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.

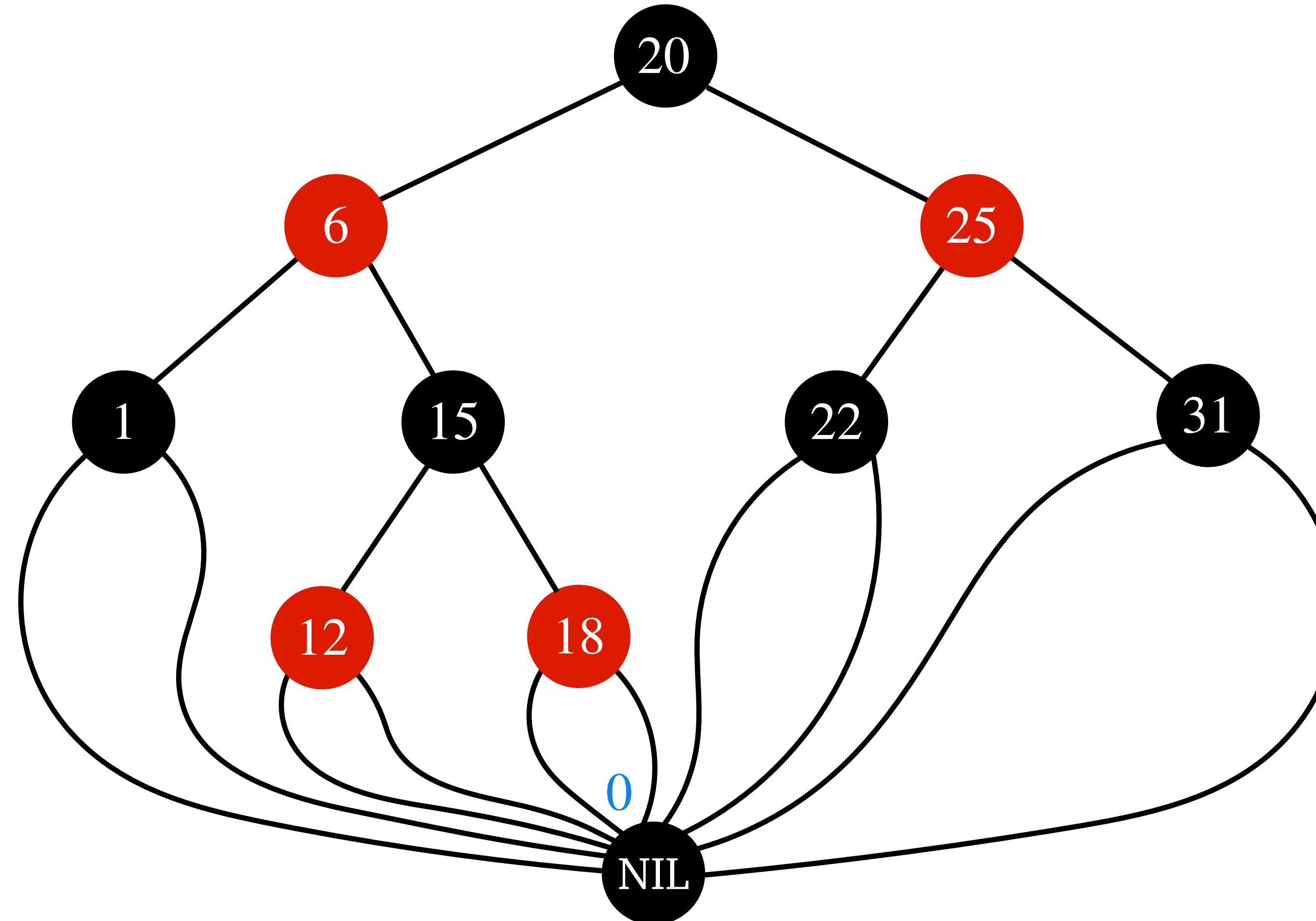
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



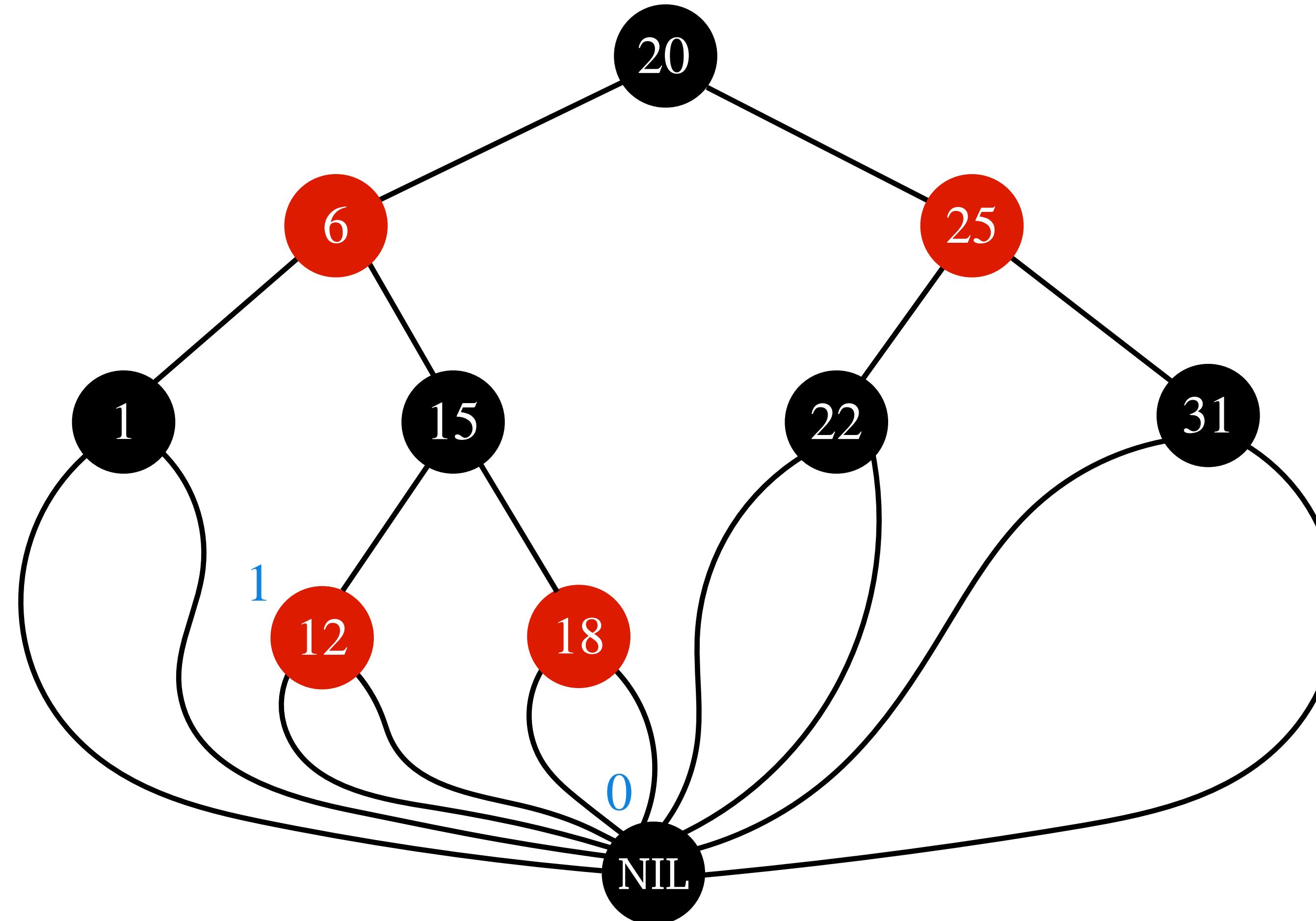
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



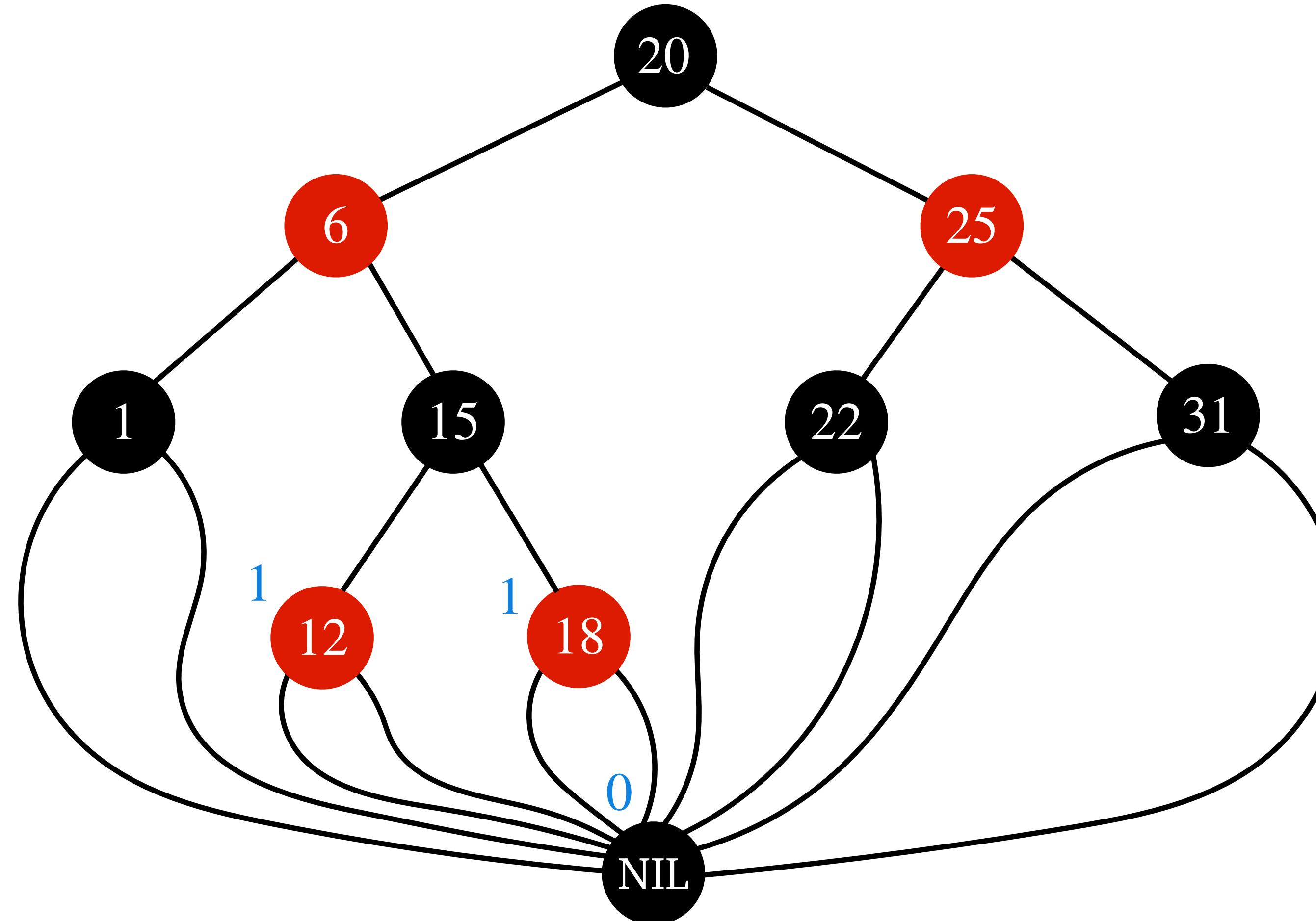
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



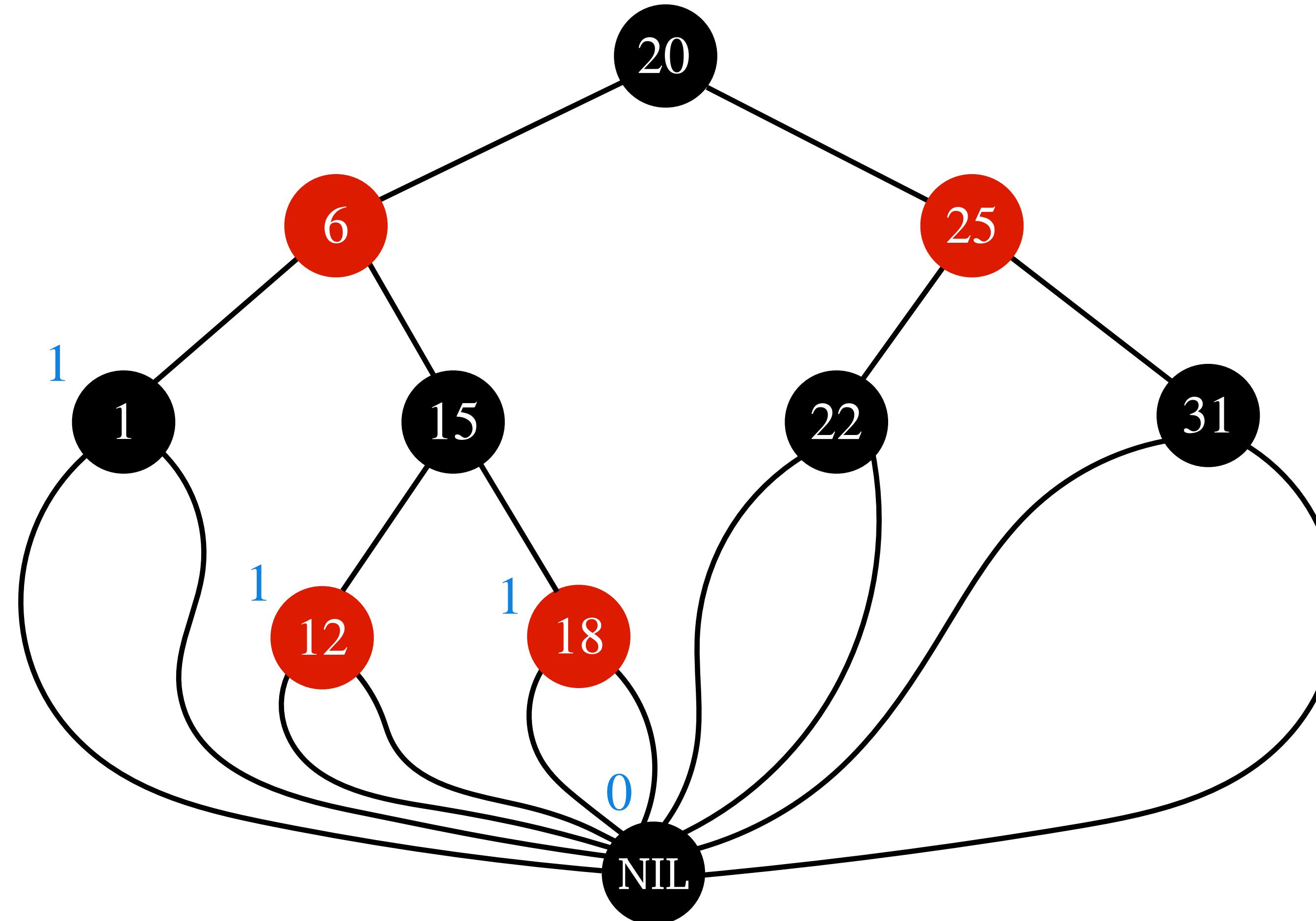
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



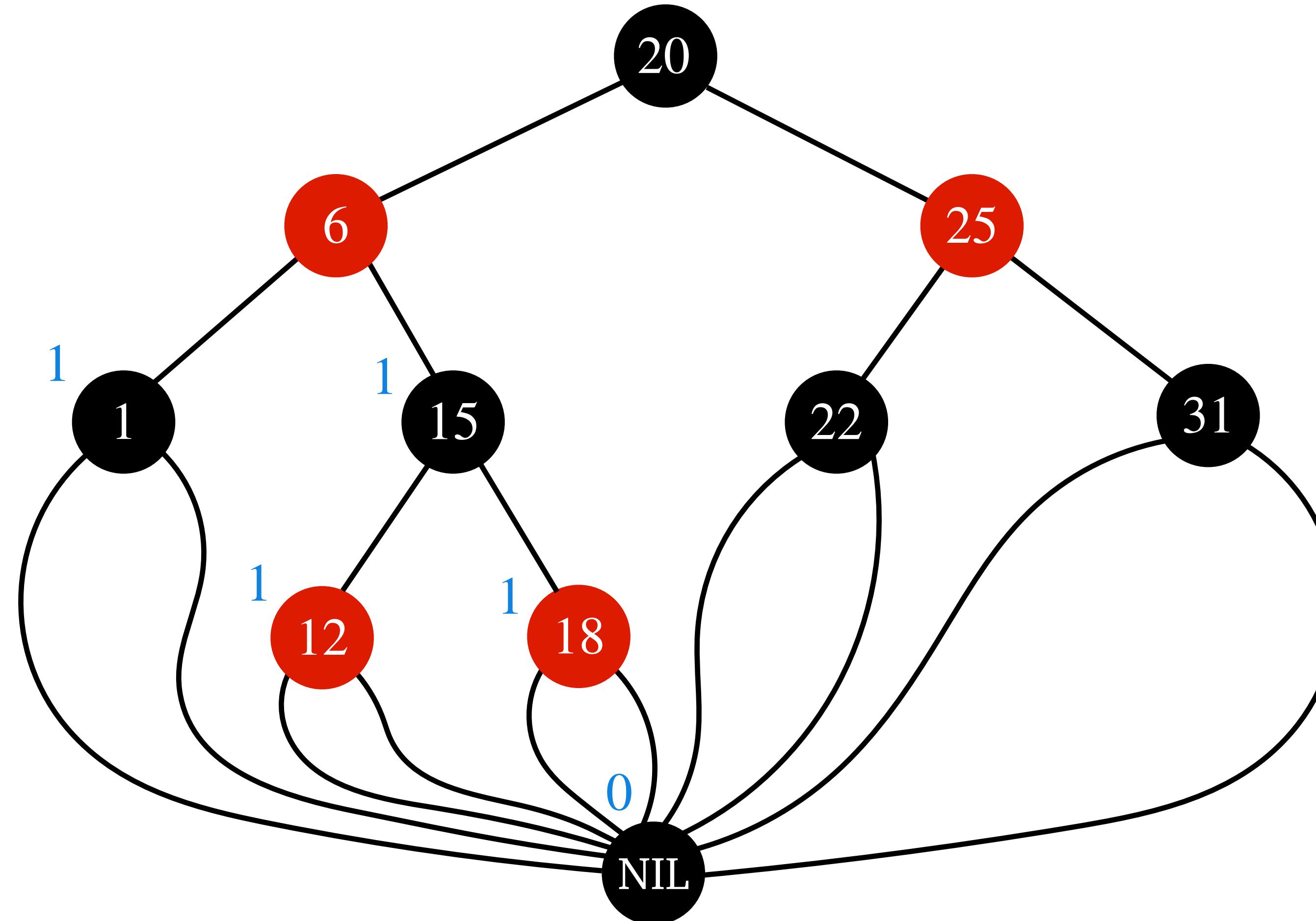
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



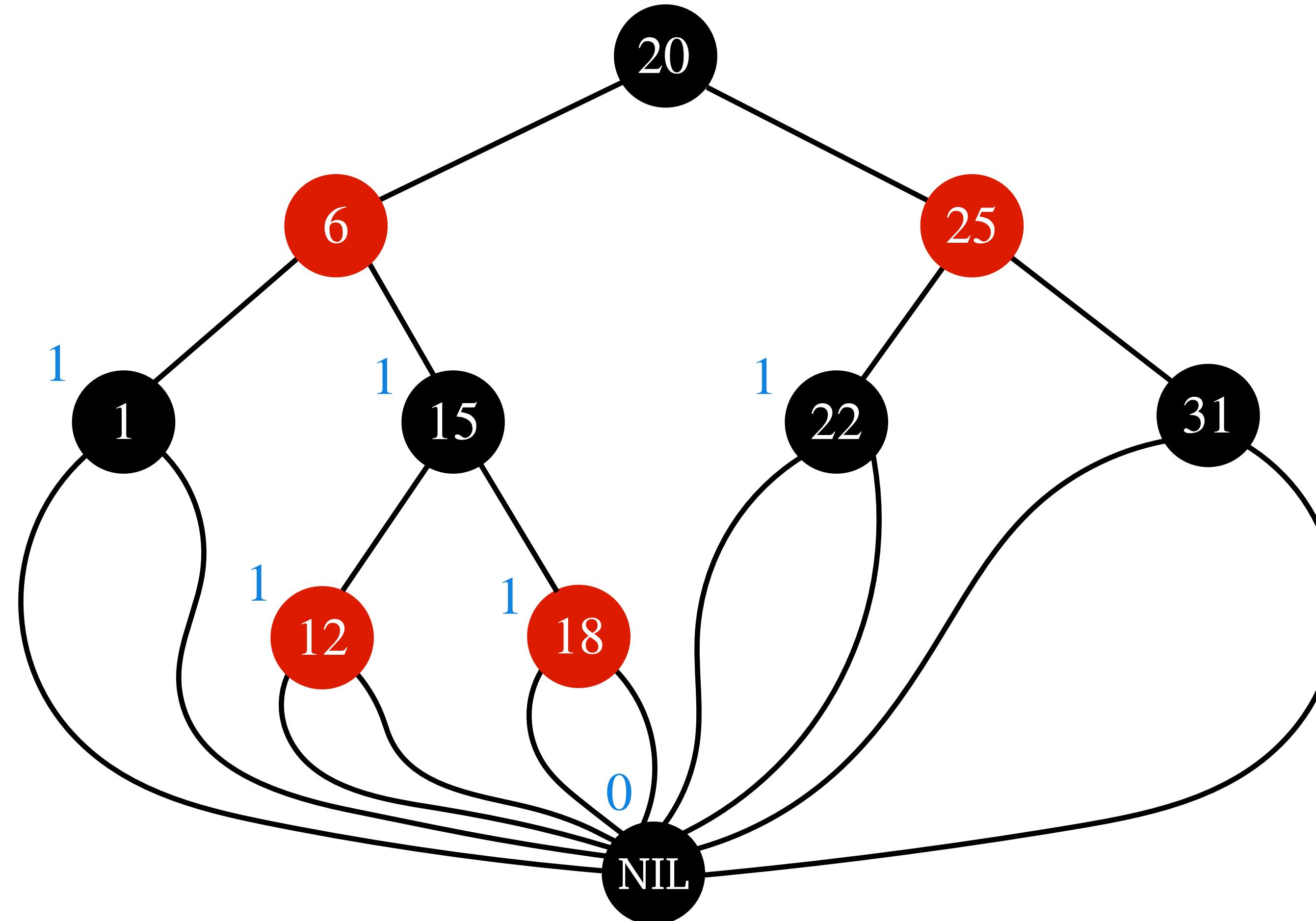
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



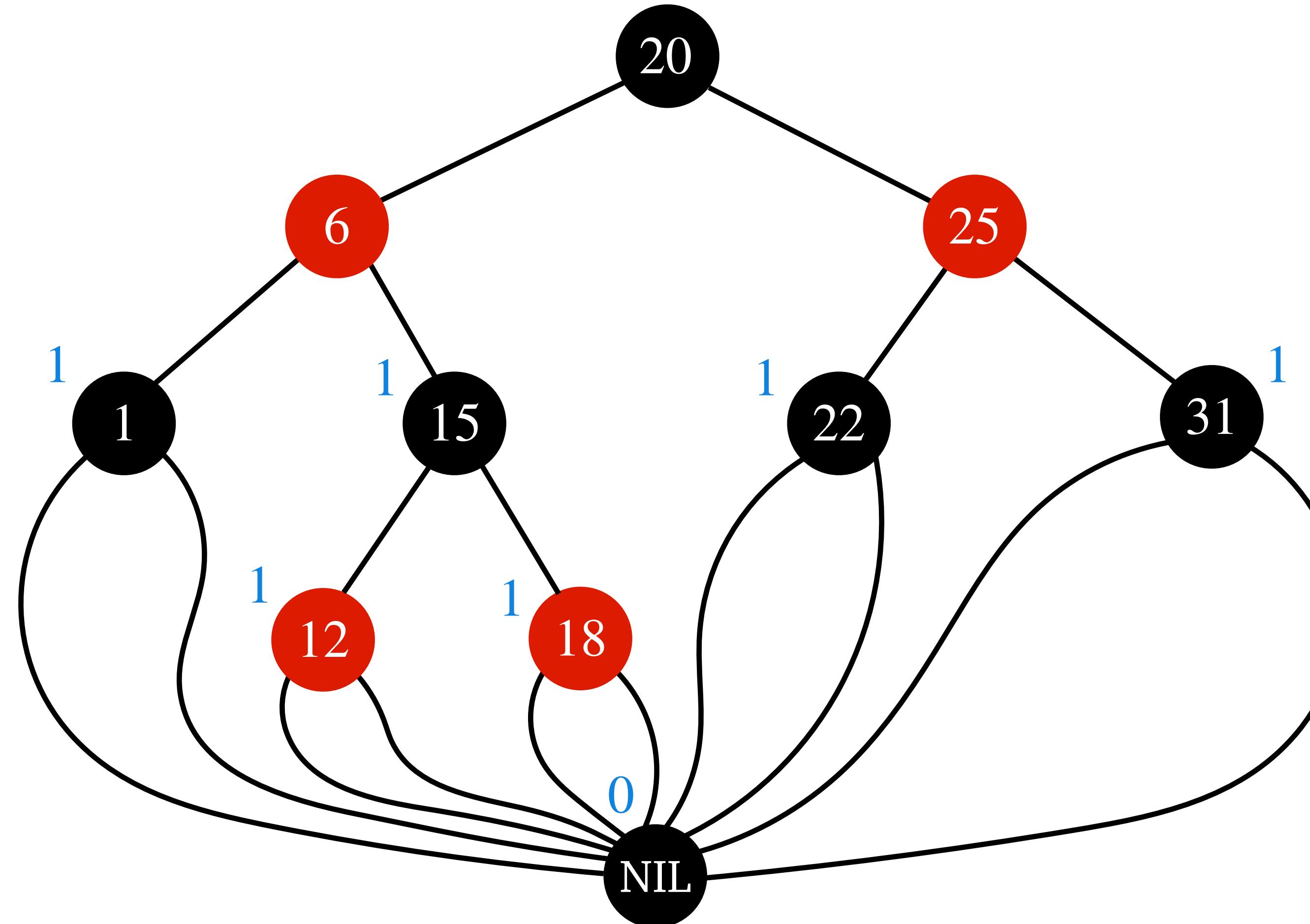
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



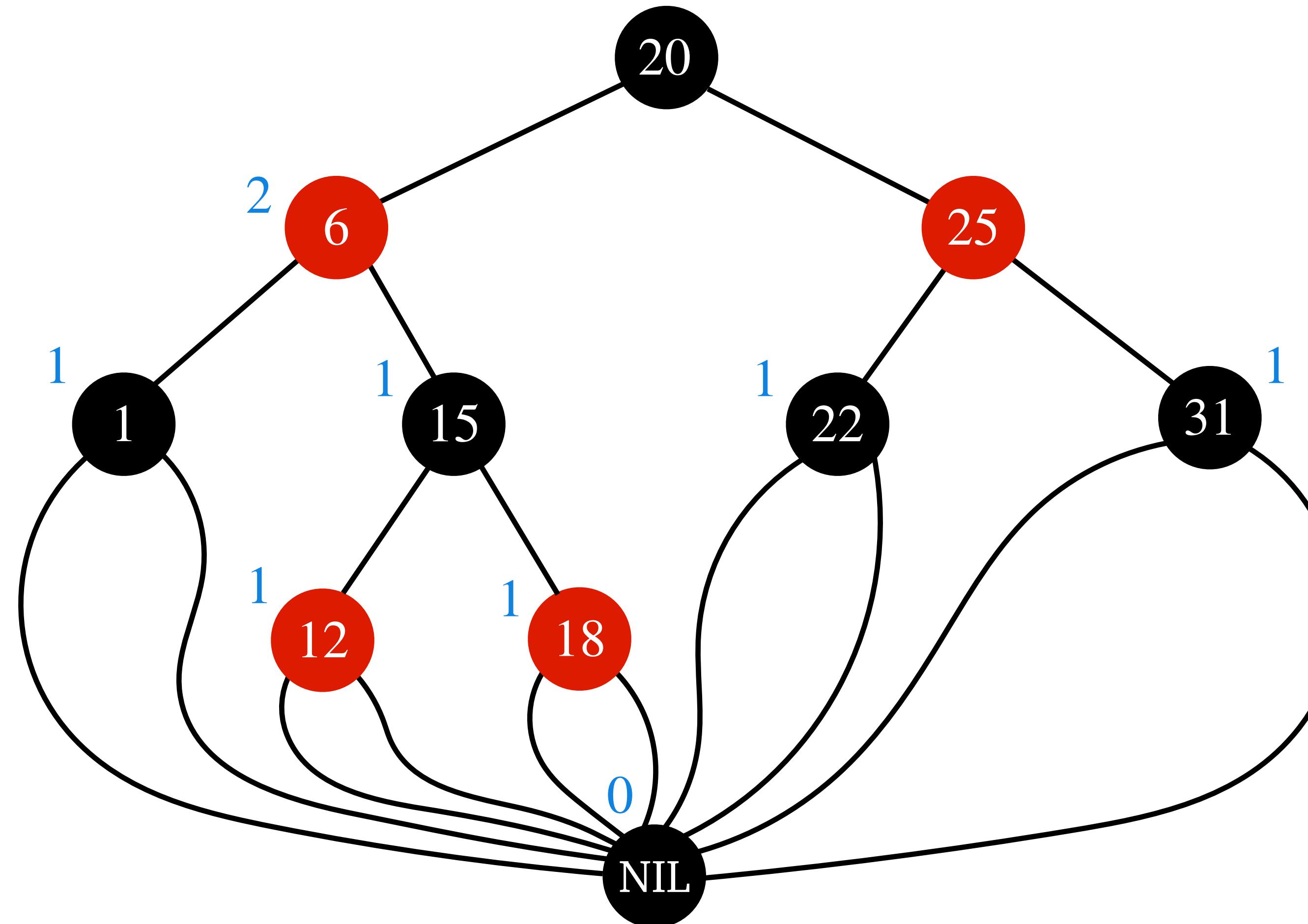
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



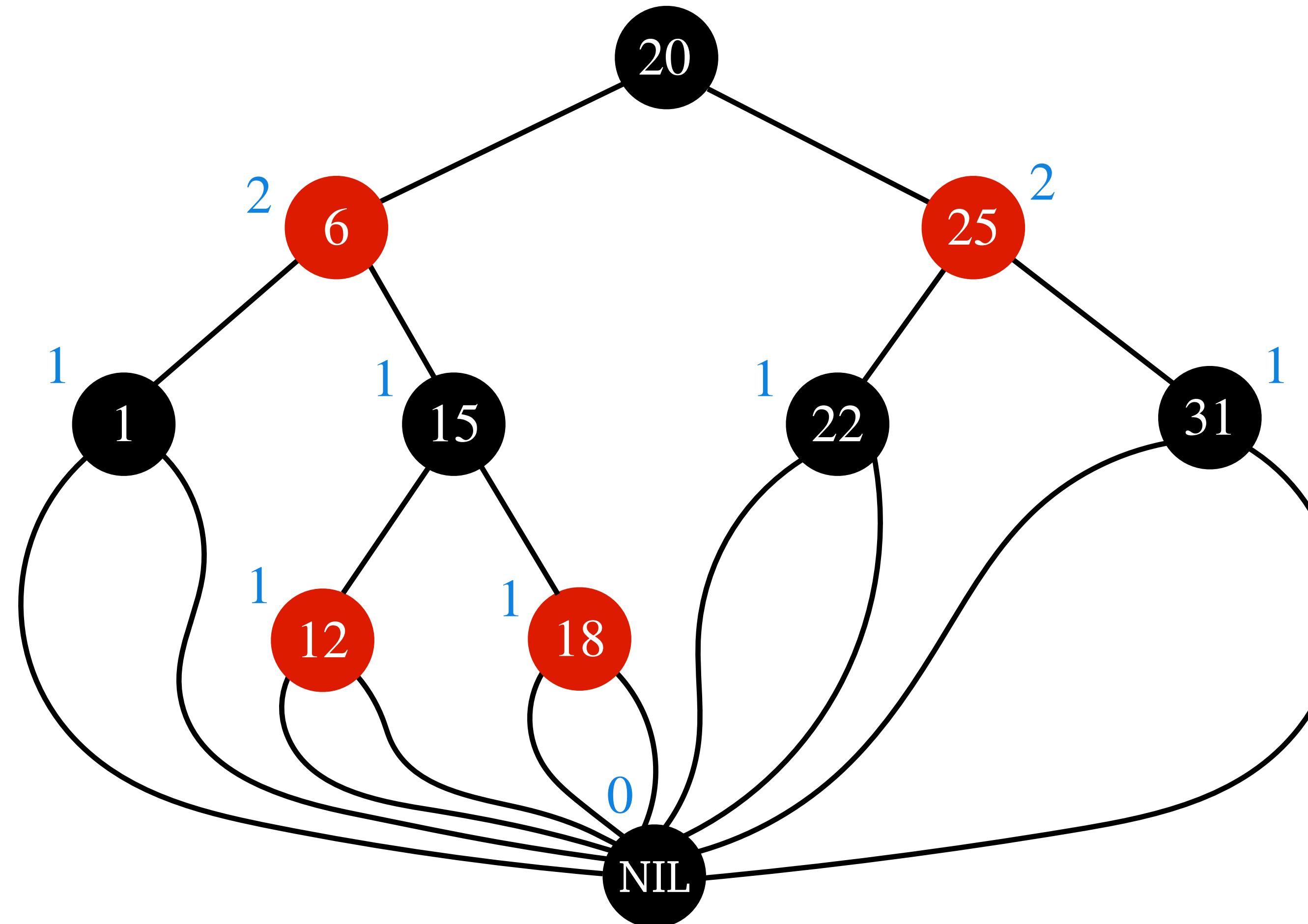
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



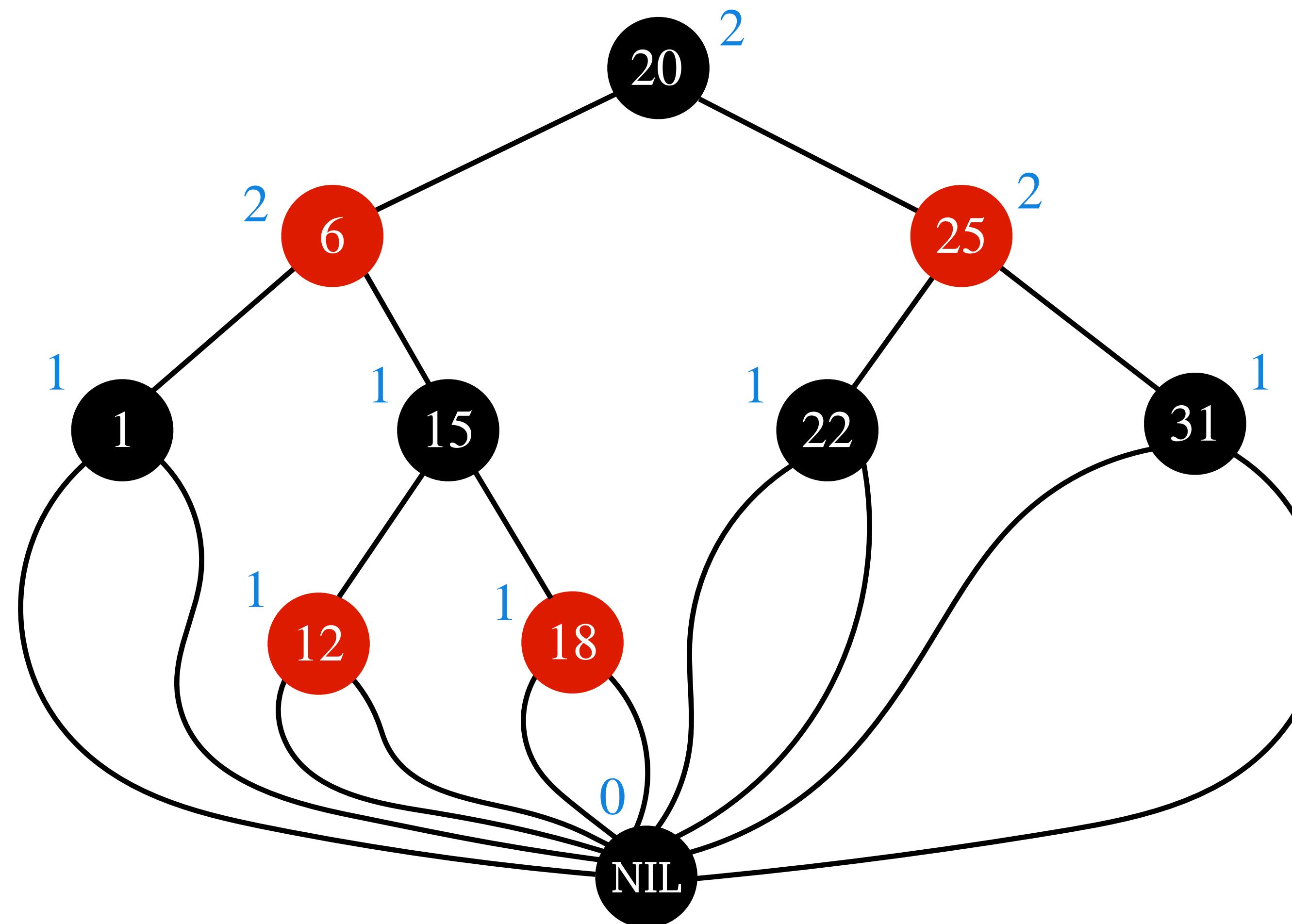
RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



RB-Trees: Black Height

Def: For any node x , the number of black nodes on any path from x to a leaf, excluding x , is called black height of x , denoted by $bh(x)$.



RB-Trees: Height Bound

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x ,

RB-Trees: Height Bound

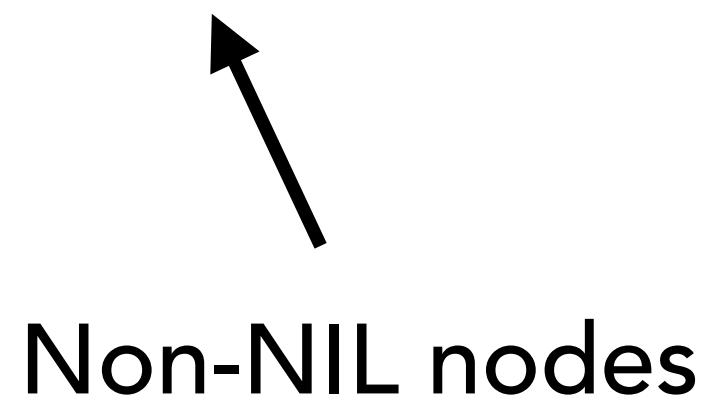
Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

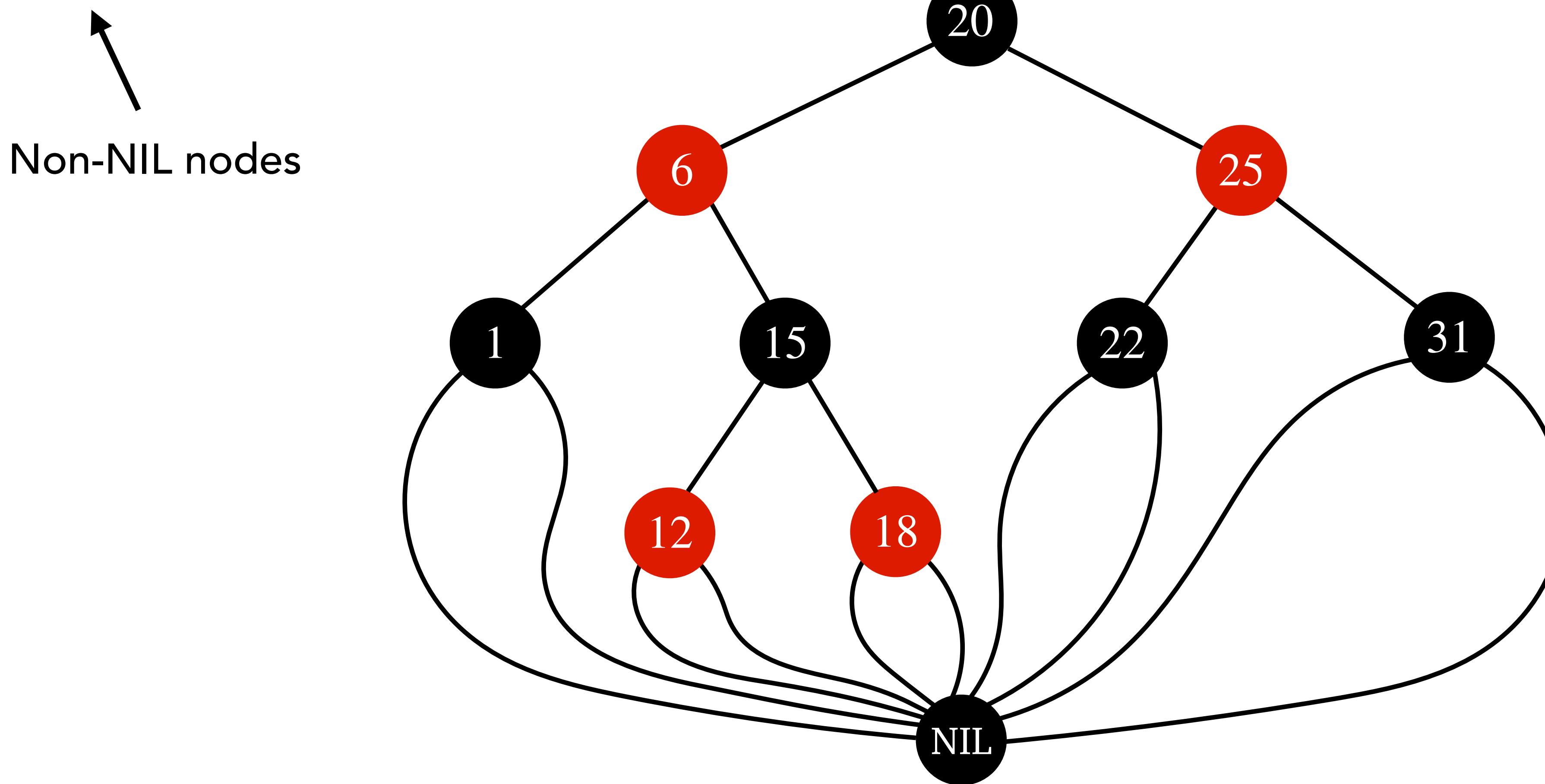
RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.



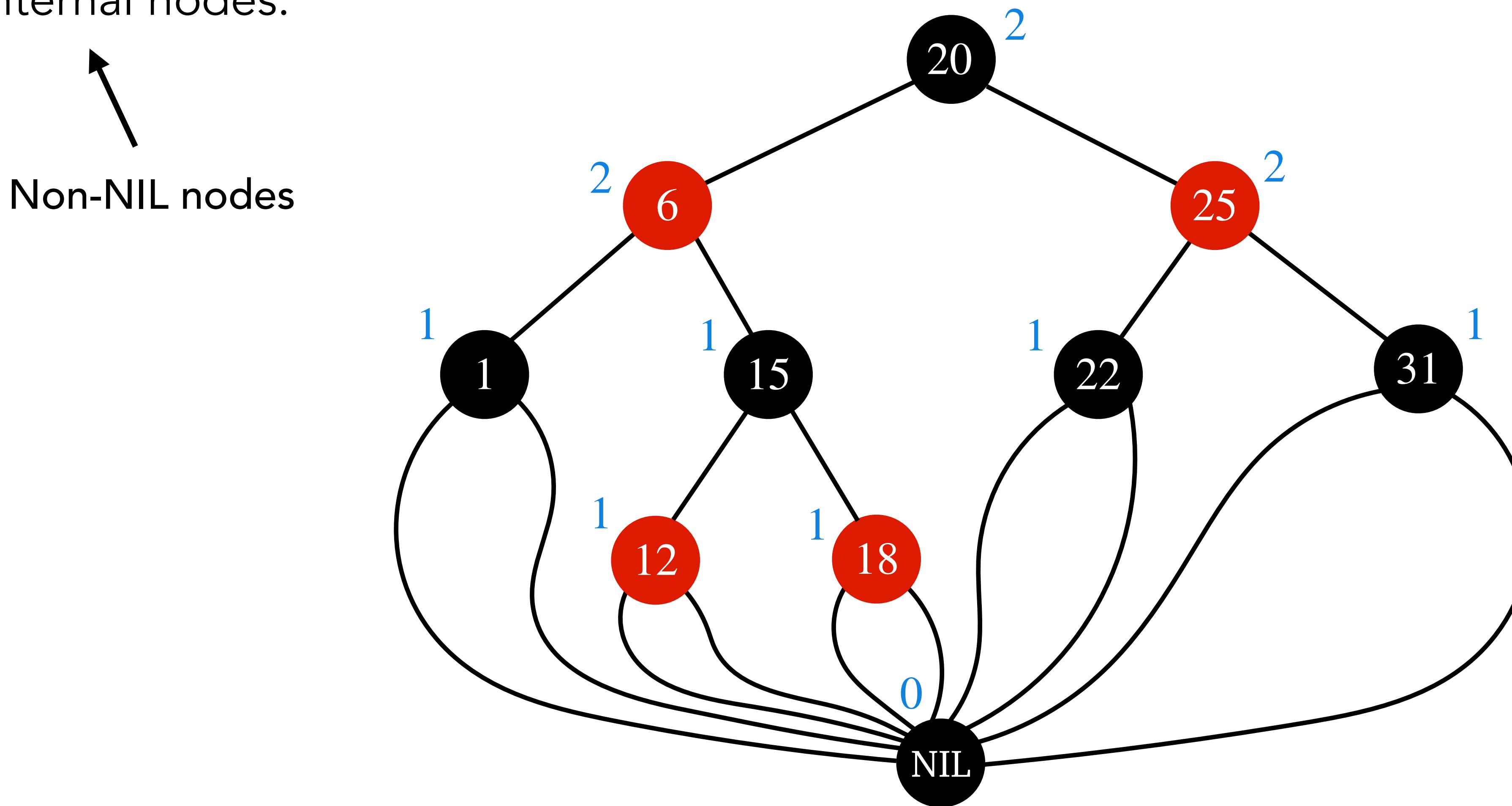
RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof:

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Will do induction on the height of the nodes.

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Will do induction on the height of the nodes.

Basis Step:

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Will do induction on the height of the nodes.

Basis Step: For nodes of height 0, i.e., NIL node, the claim is trivially true as:

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Will do induction on the height of the nodes.

Basis Step: For nodes of height 0, i.e., NIL node, the claim is trivially true as:

- $bh(x) = 0$

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Will do induction on the height of the nodes.

Basis Step: For nodes of height 0, i.e., NIL node, the claim is trivially true as:

- $bh(x) = 0$
- Subtree at NIL node contains $0 = 2^0 - 1$ internal nodes.

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof:

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step:

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

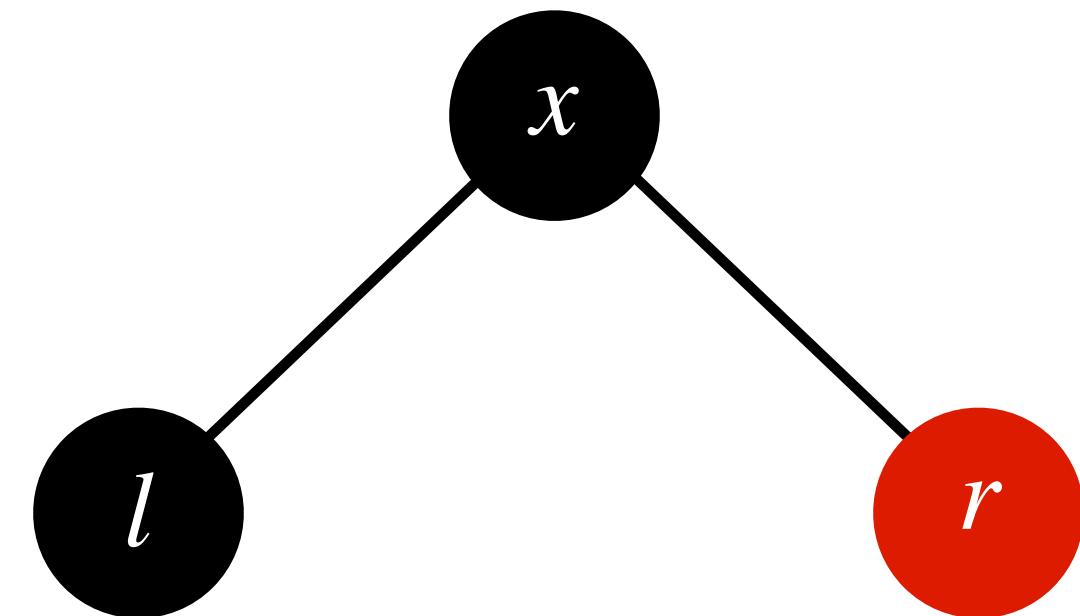
Let x be a node of height $i + 1$, and l and r be its children.

RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.



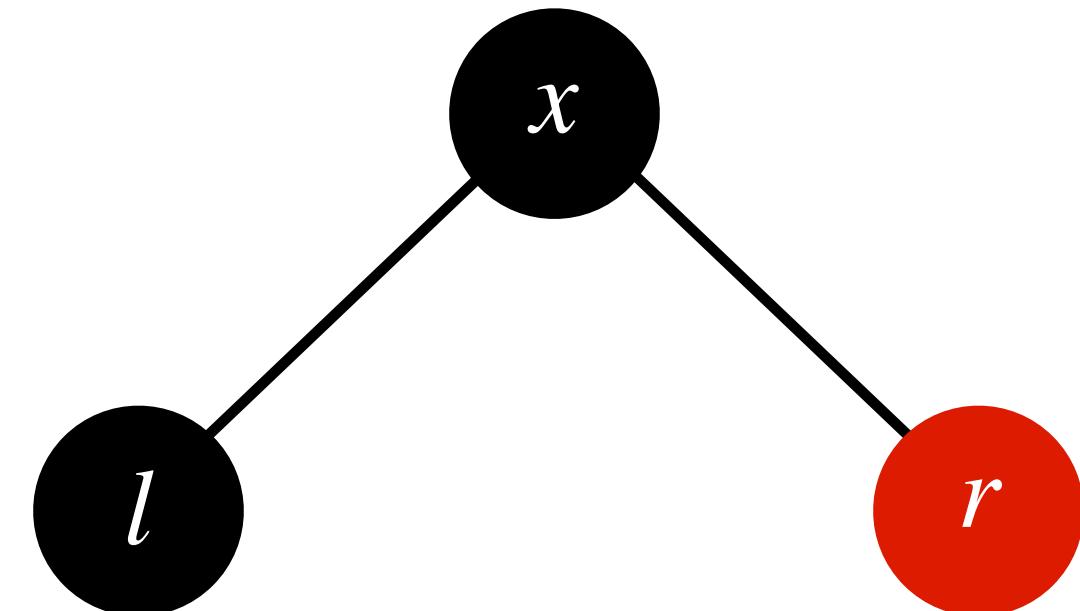
RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$



RB-Trees: Height Bound

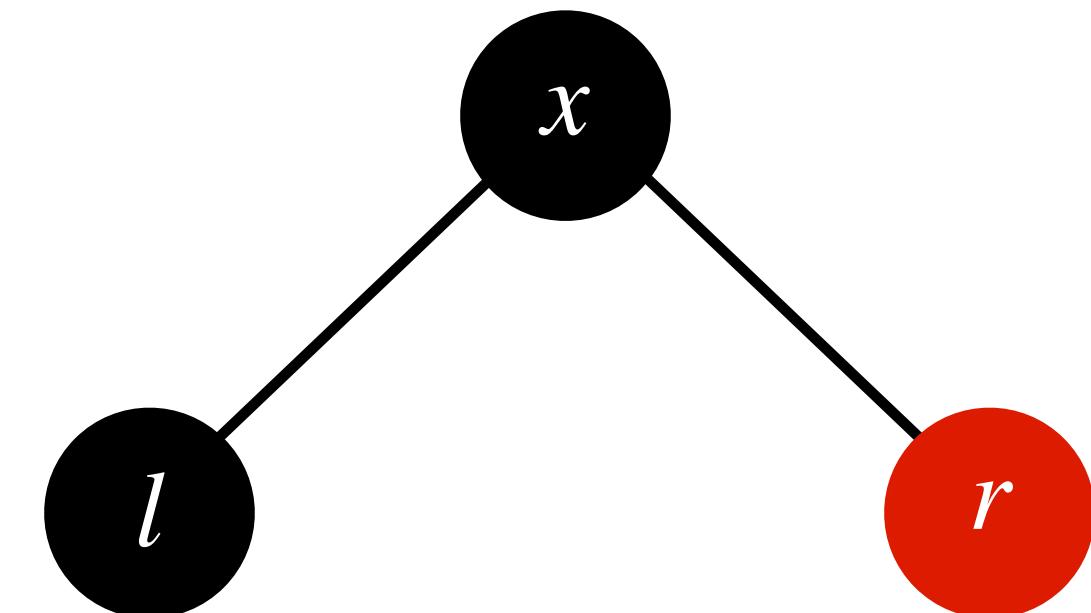
Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$



RB-Trees: Height Bound

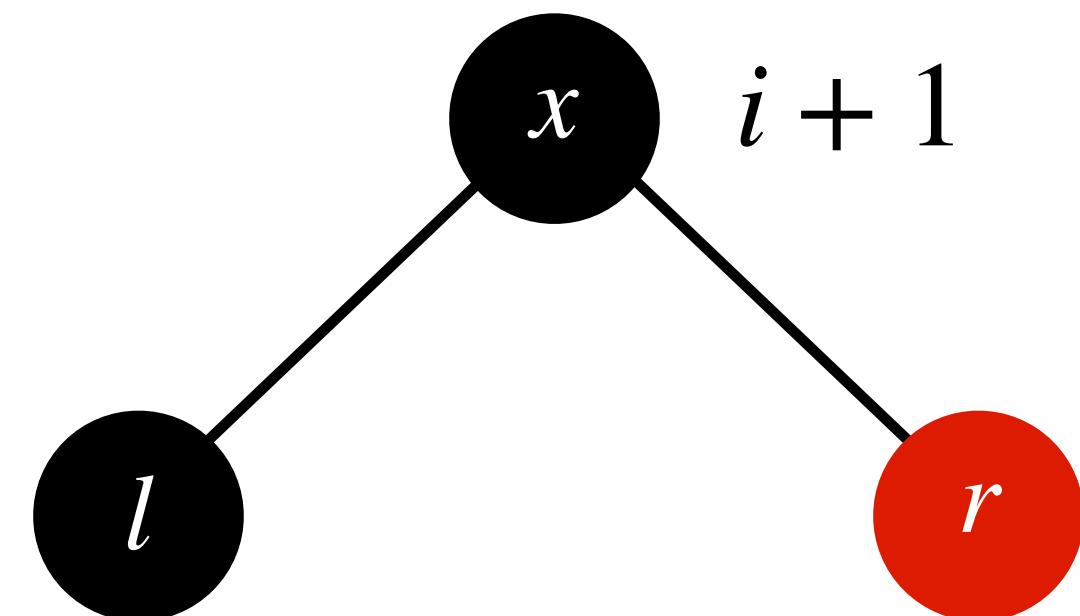
Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$



RB-Trees: Height Bound

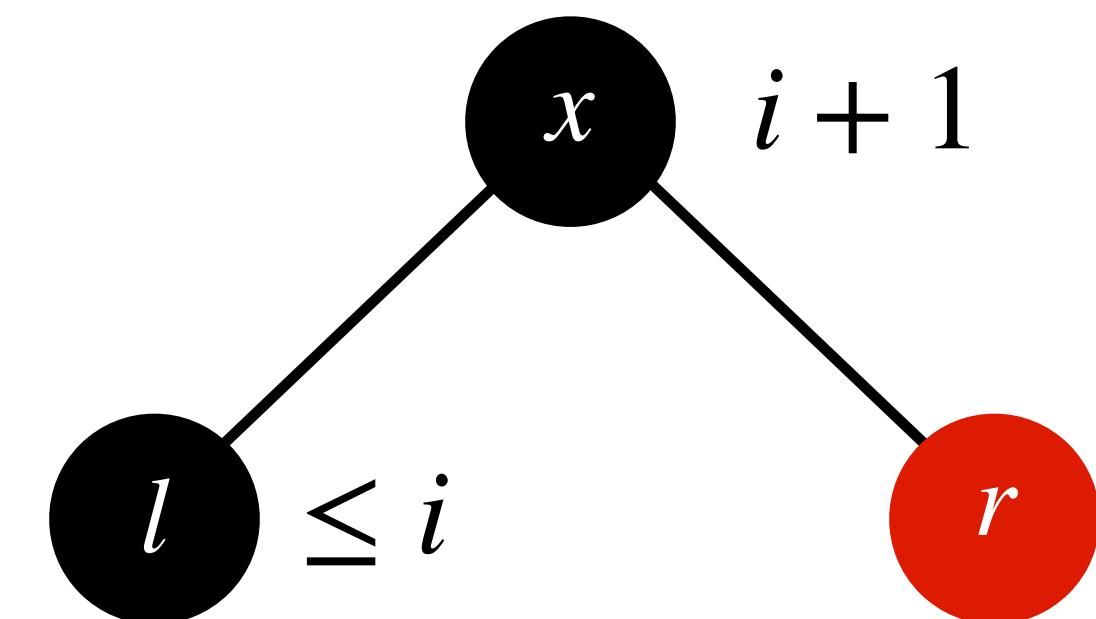
Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$



RB-Trees: Height Bound

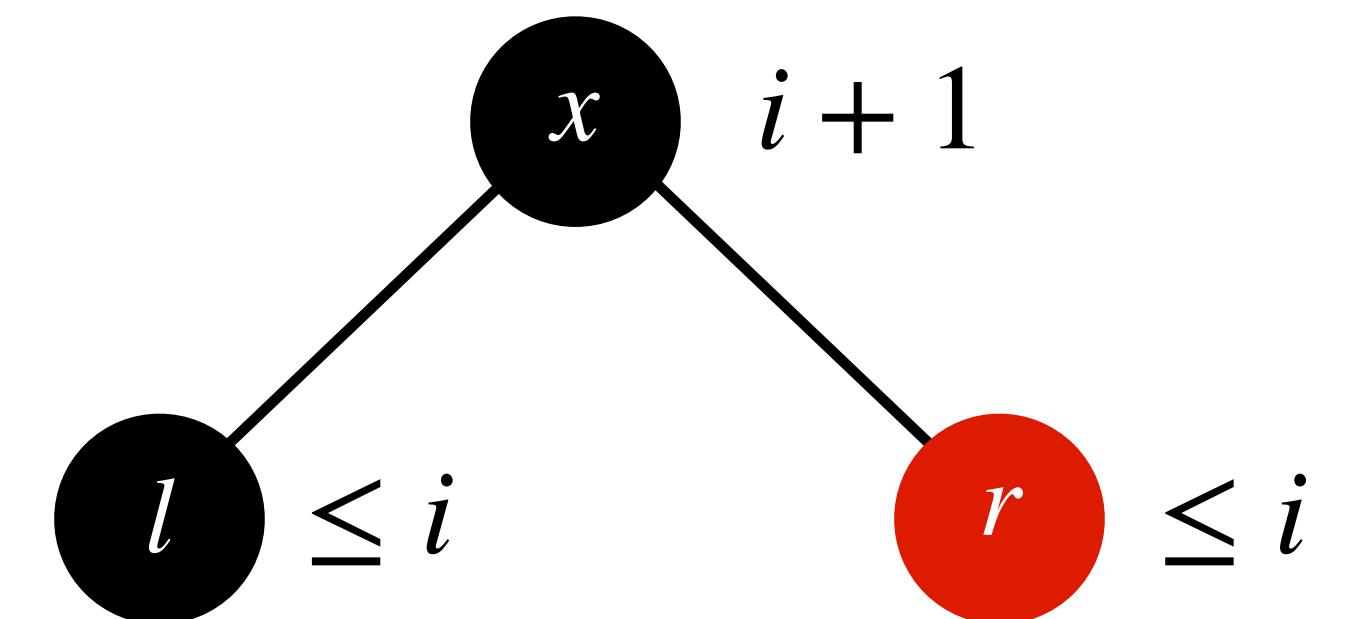
Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

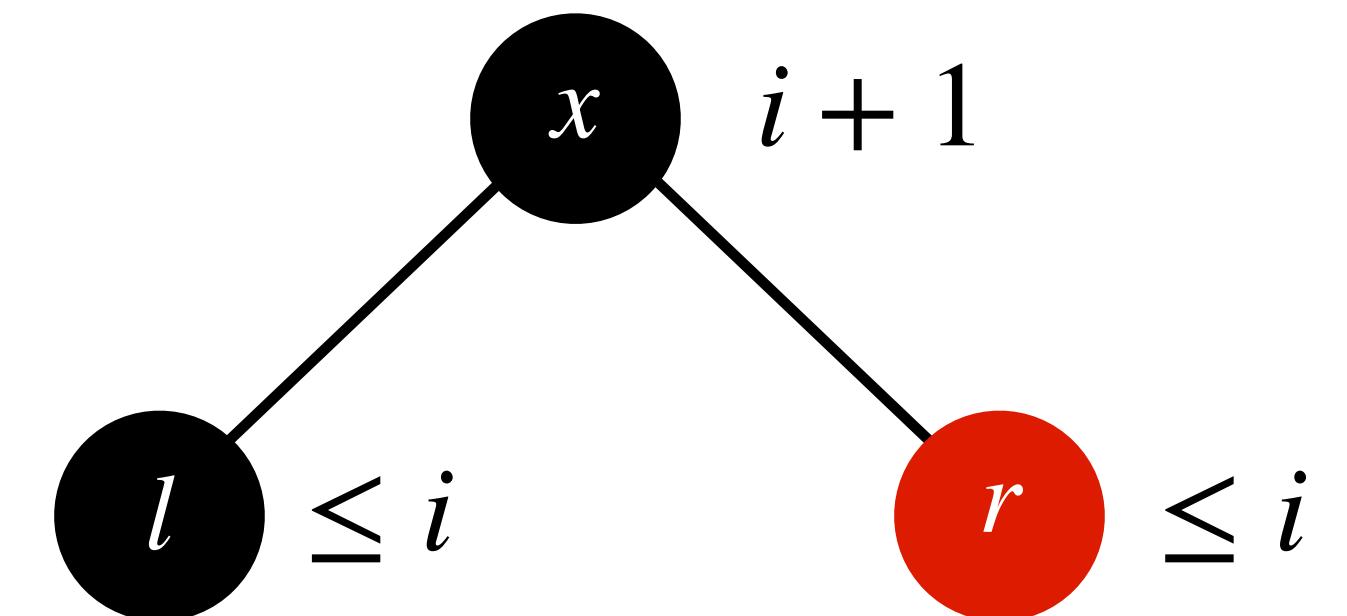
Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

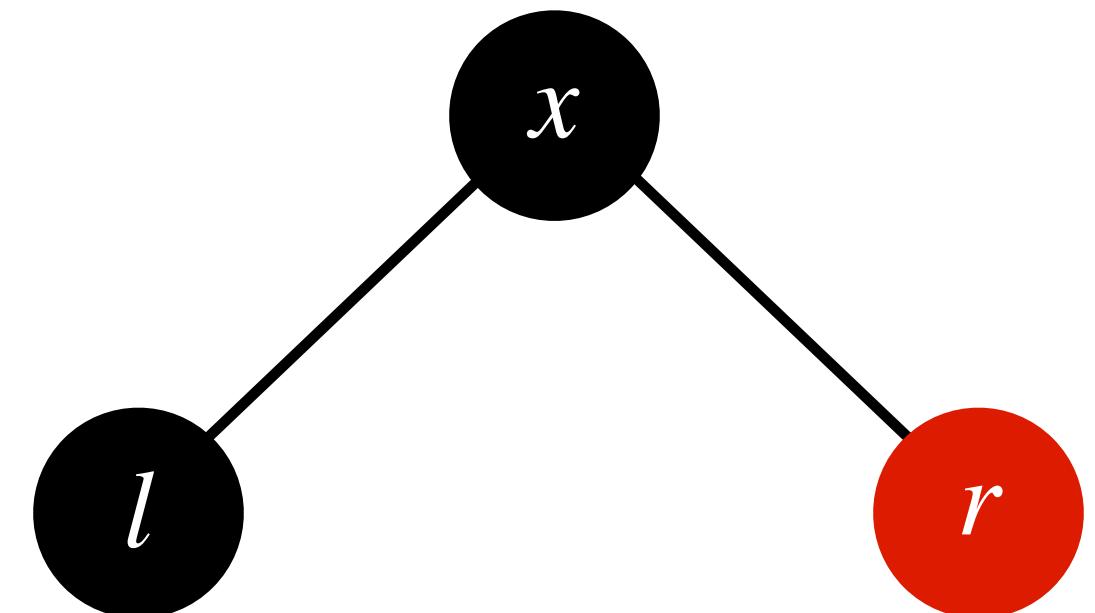
Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

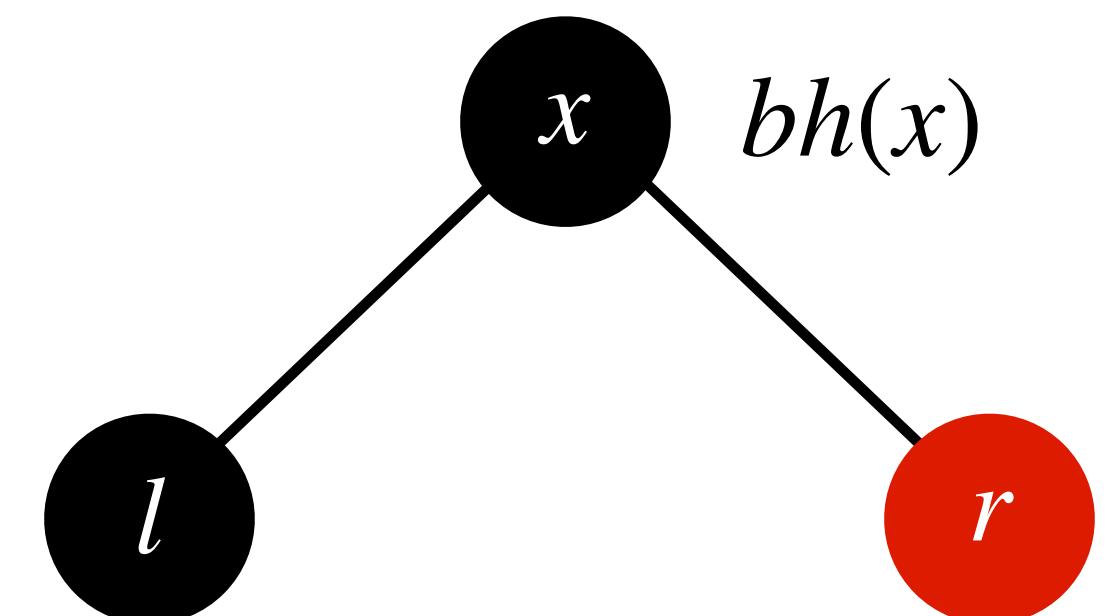
Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

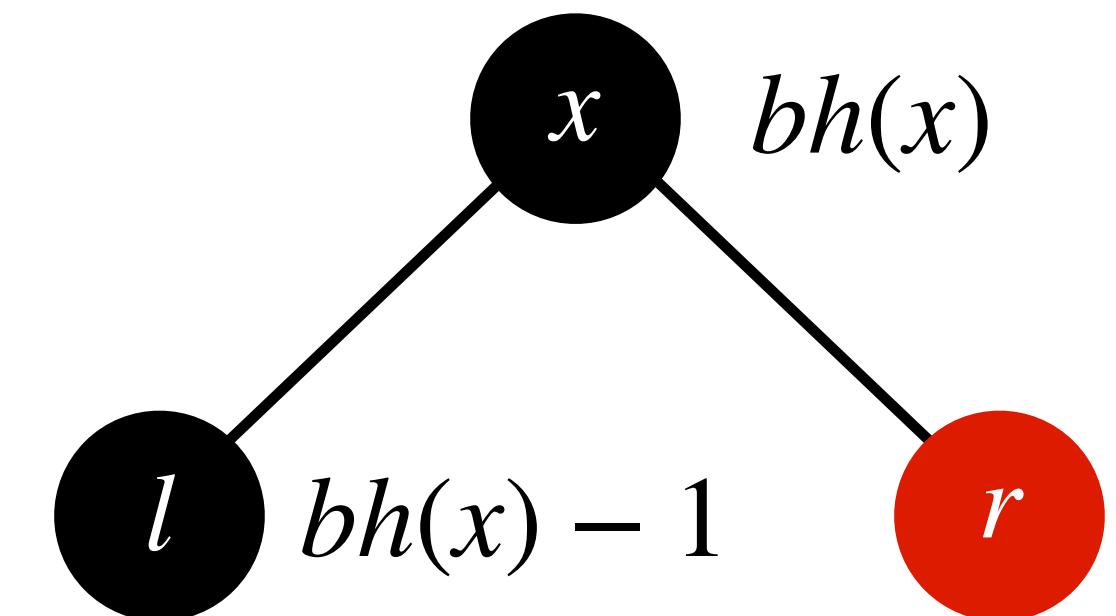
Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

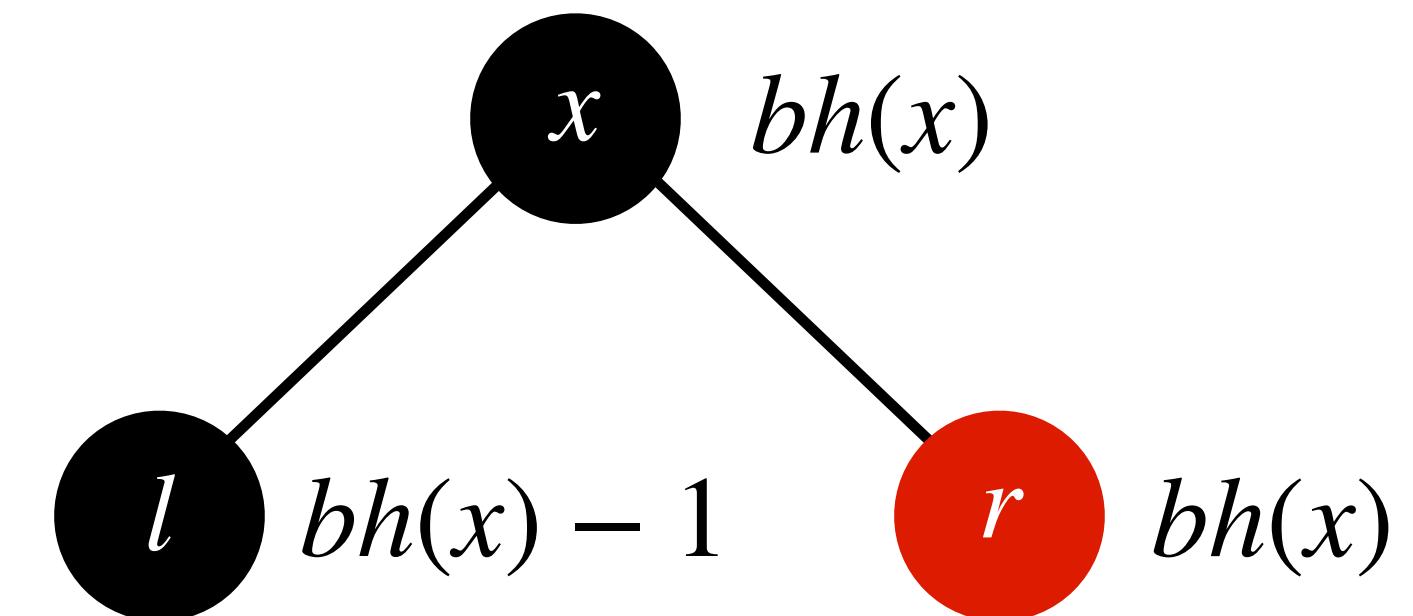
Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

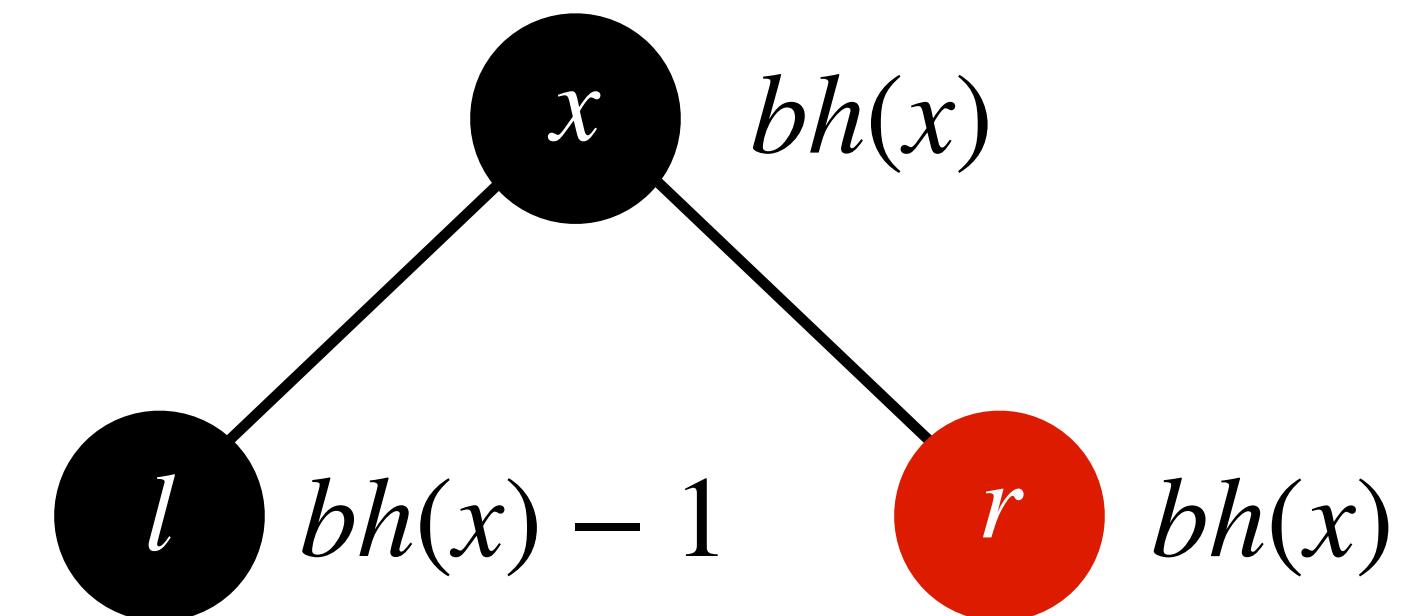
Let x be a node of height $i + 1$, and l and r be its children.

internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$

$$\geq 1 + 2^{bh(x)-1} - 1 + 2^{bh(x)-1} - 1$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

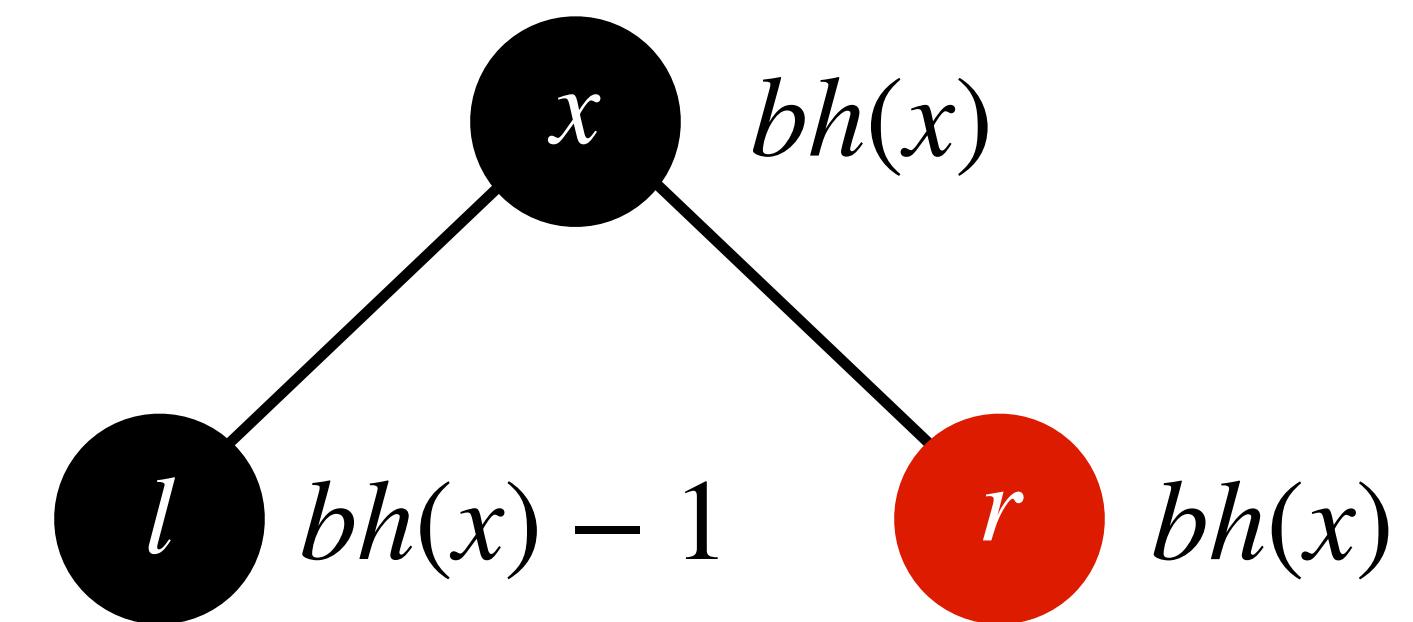
internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$

$$\geq 1 + 2^{bh(x)-1} - 1 + 2^{bh(x)-1} - 1$$

$$= 2^{bh(x)} - 1$$



RB-Trees: Height Bound

Claim: In any RB-tree, every subtree rooted at any node, say x , contains at least $2^{bh(x)} - 1$ internal nodes.

Proof: Inductive Step: Assume the claim is true for any node of height $\leq i$.

Let x be a node of height $i + 1$, and l and r be its children.

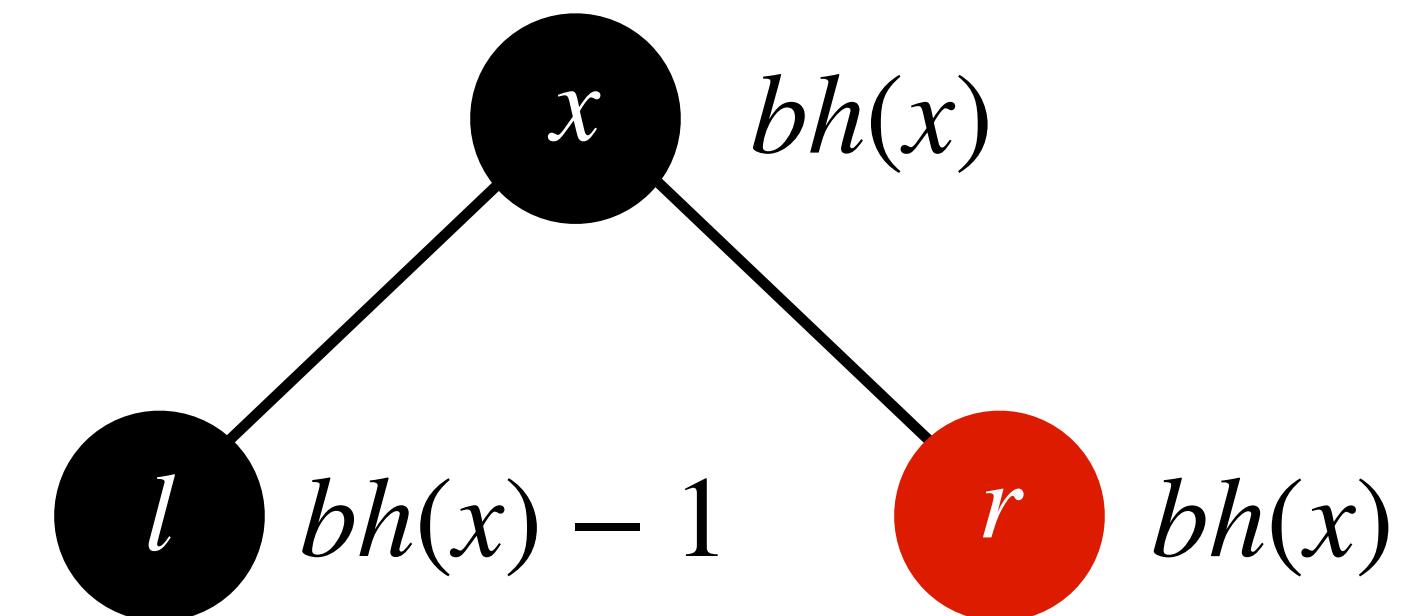
internal nodes in $\text{subtree}(x)$

$$= 1 + \# \text{ internal nodes in } \text{subtree}(l), \text{subtree}(r)$$

$$\geq 1 + 2^{bh(l)} - 1 + 2^{bh(r)} - 1$$

$$\geq 1 + 2^{bh(x)-1} - 1 + 2^{bh(x)-1} - 1$$

$$= 2^{bh(x)} - 1$$



RB-Trees: Height Bound

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof:

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

RB-Trees: Height Bound

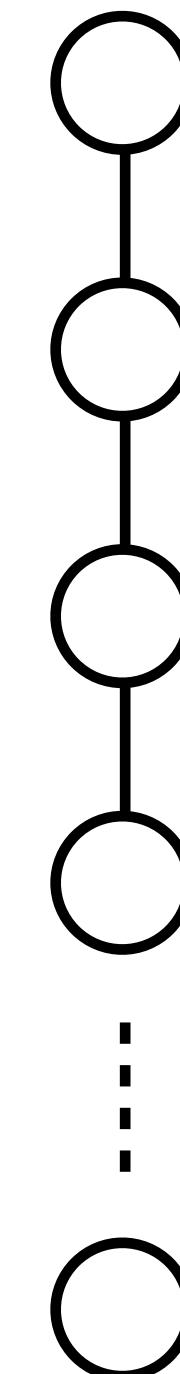
Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$



RB-Trees: Height Bound

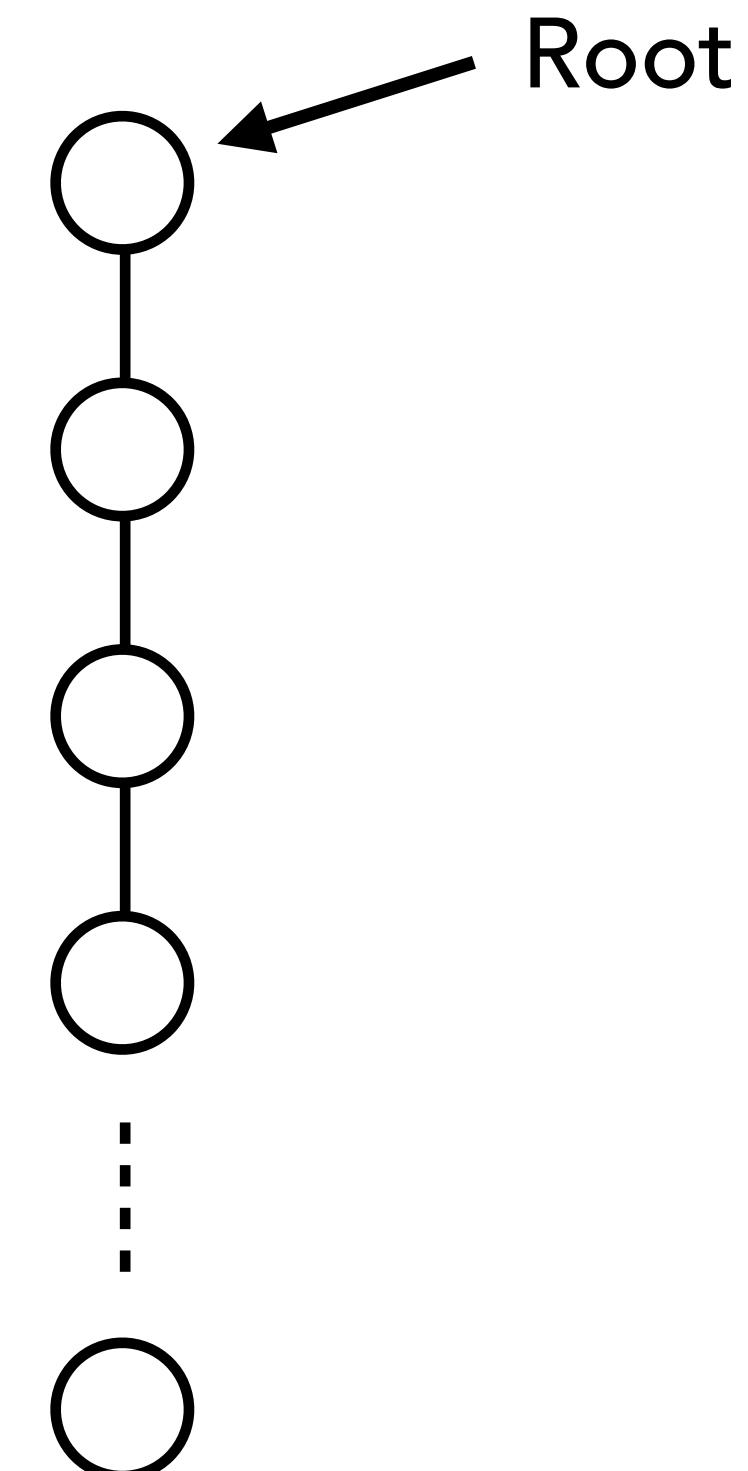
Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$



RB-Trees: Height Bound

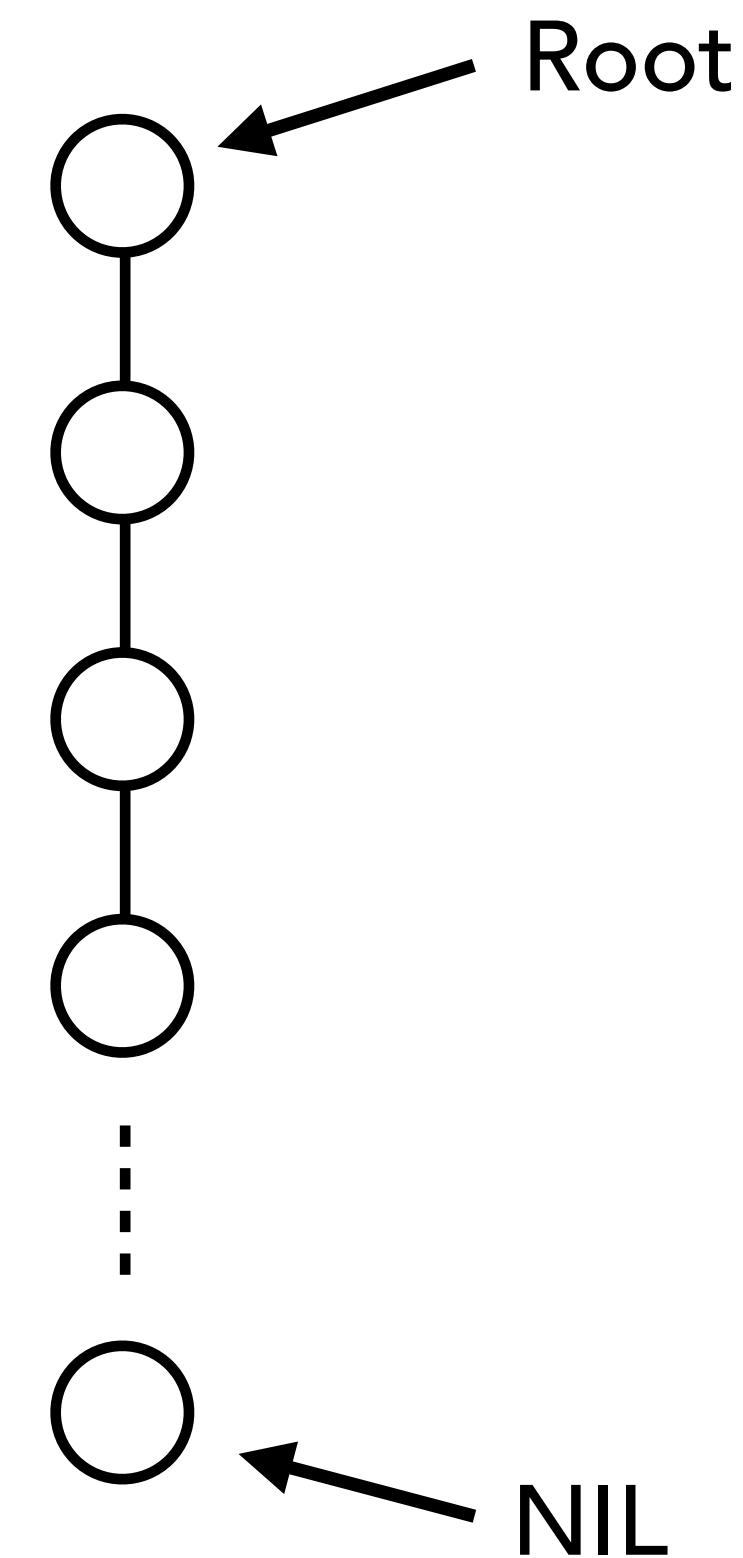
Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$



RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

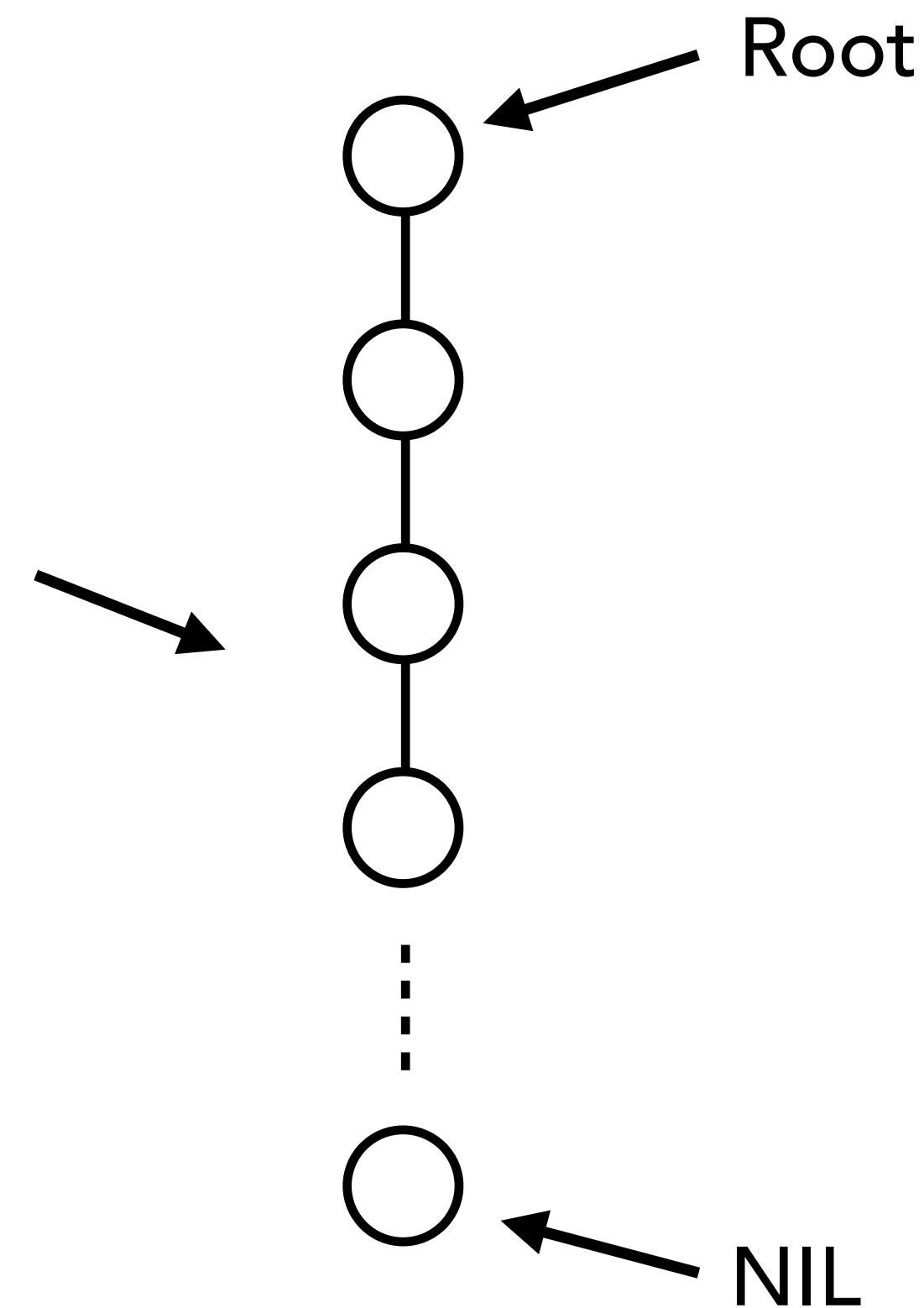
Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

Longest path of length h
from root to NIL.



RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

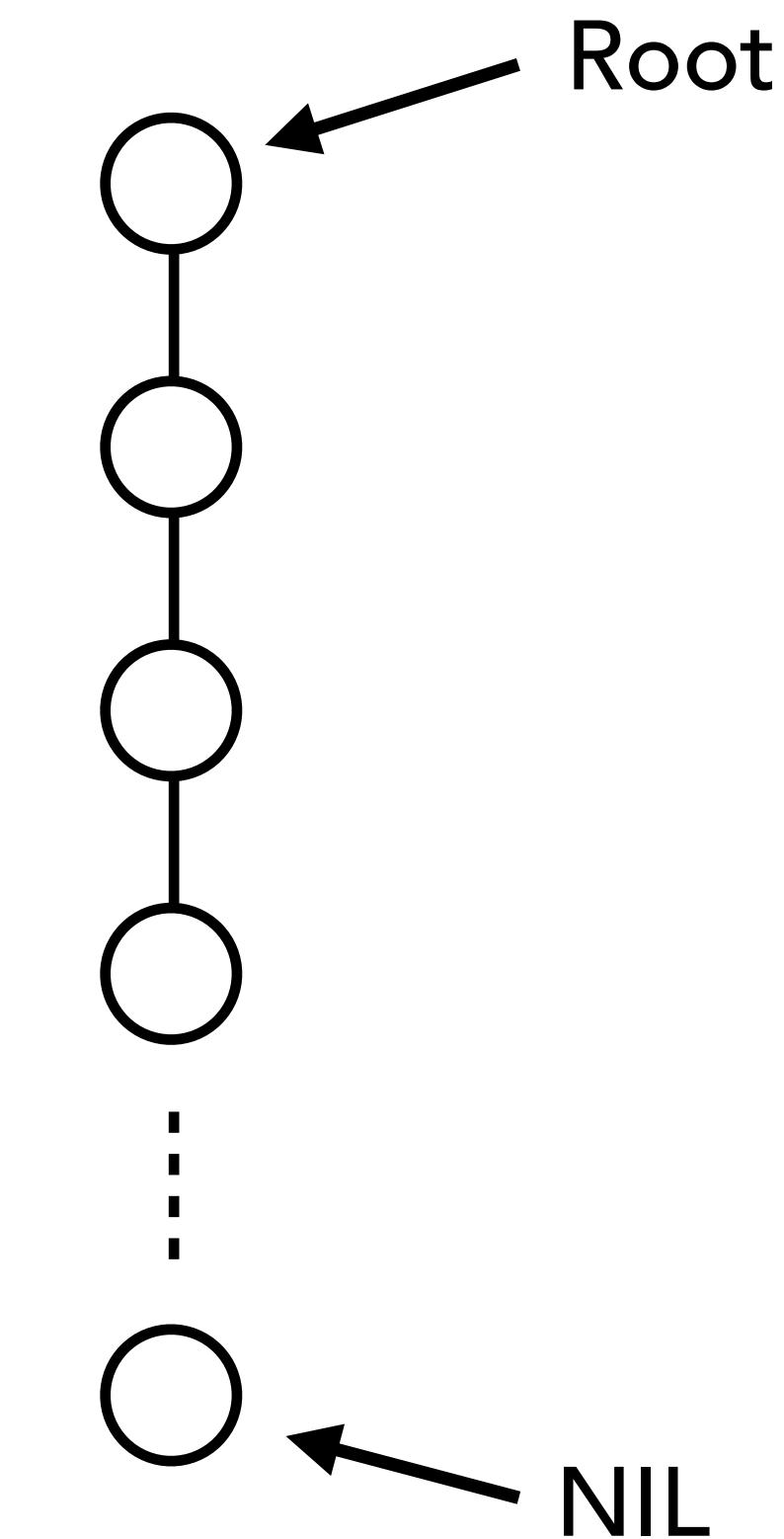
We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

Longest path of length h
from root to NIL.

At least how many
nodes will be black?



RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

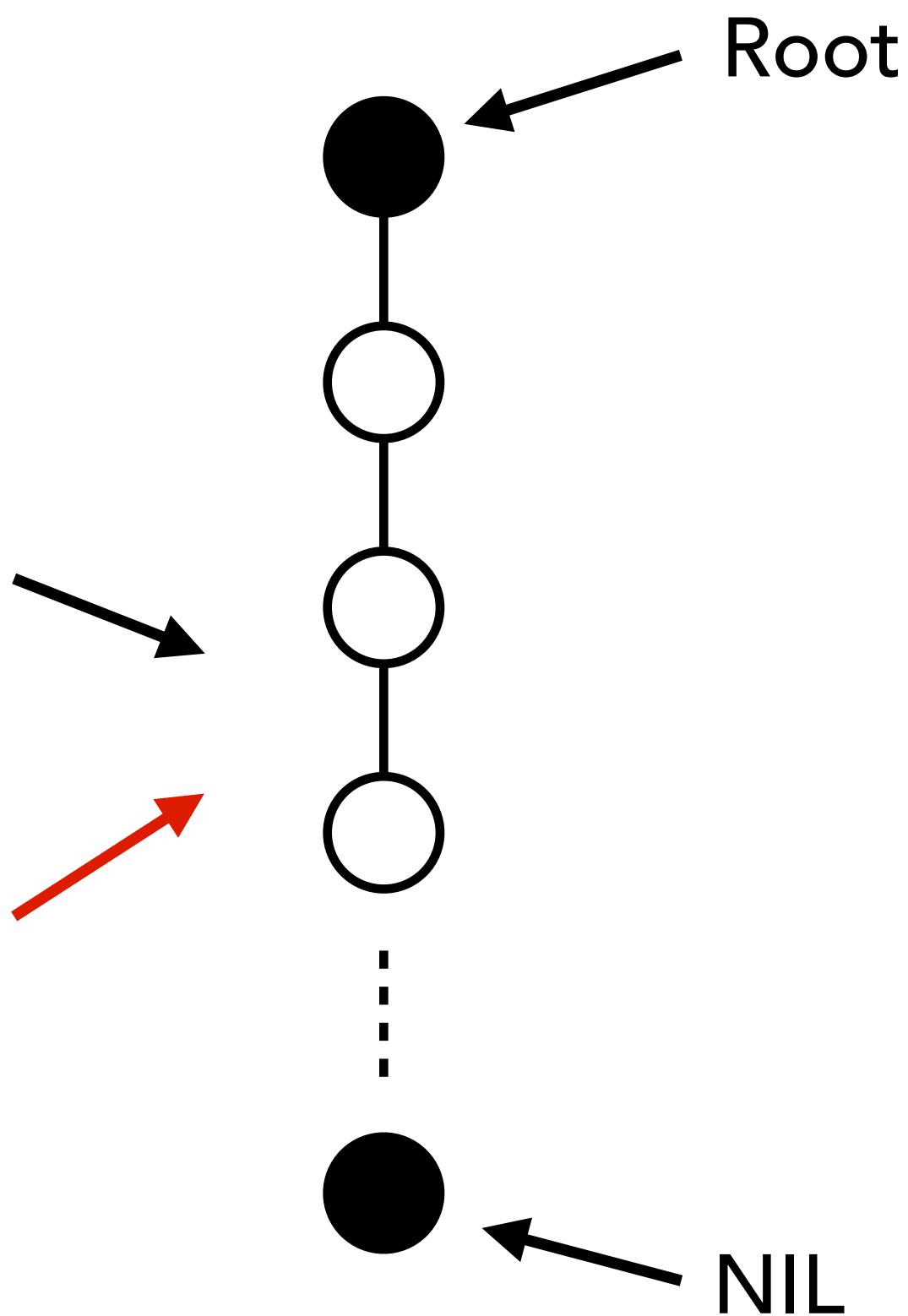
We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

Longest path of length h
from root to NIL.

At least how many
nodes will be black?



RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

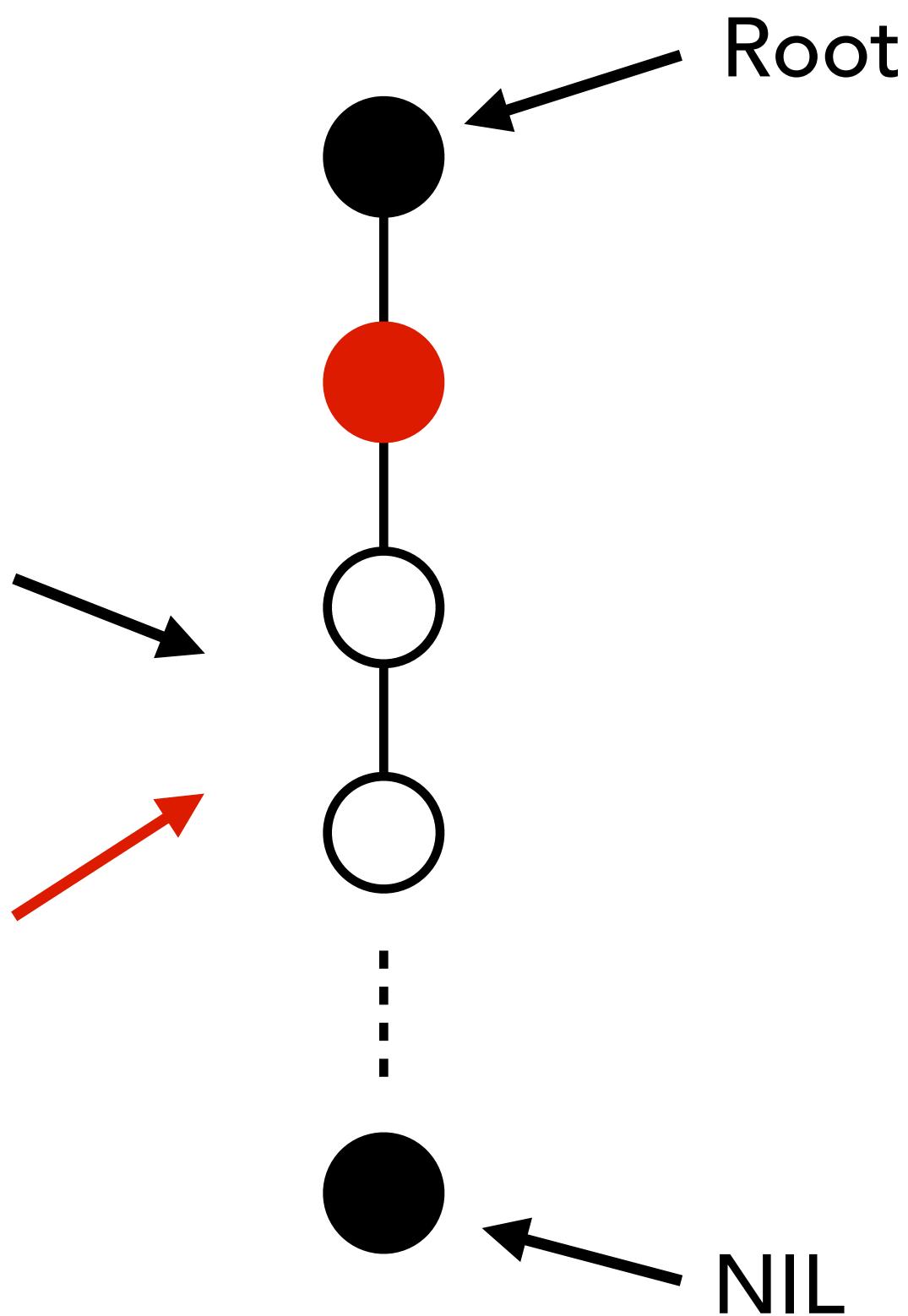
We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

Longest path of length h
from root to NIL.

At least how many
nodes will be black?



RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

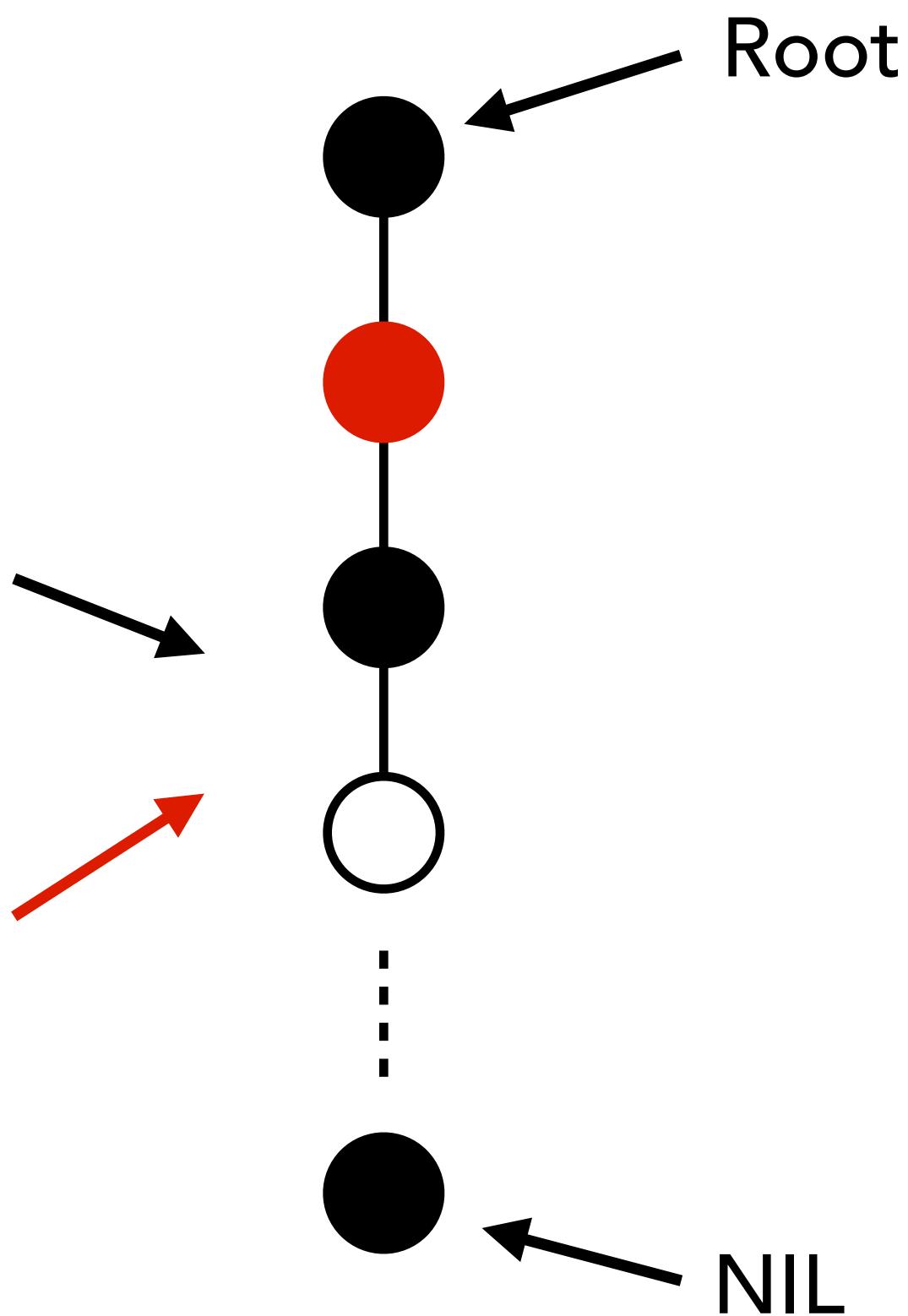
We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

Longest path of length h
from root to NIL.

At least how many
nodes will be black?



RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

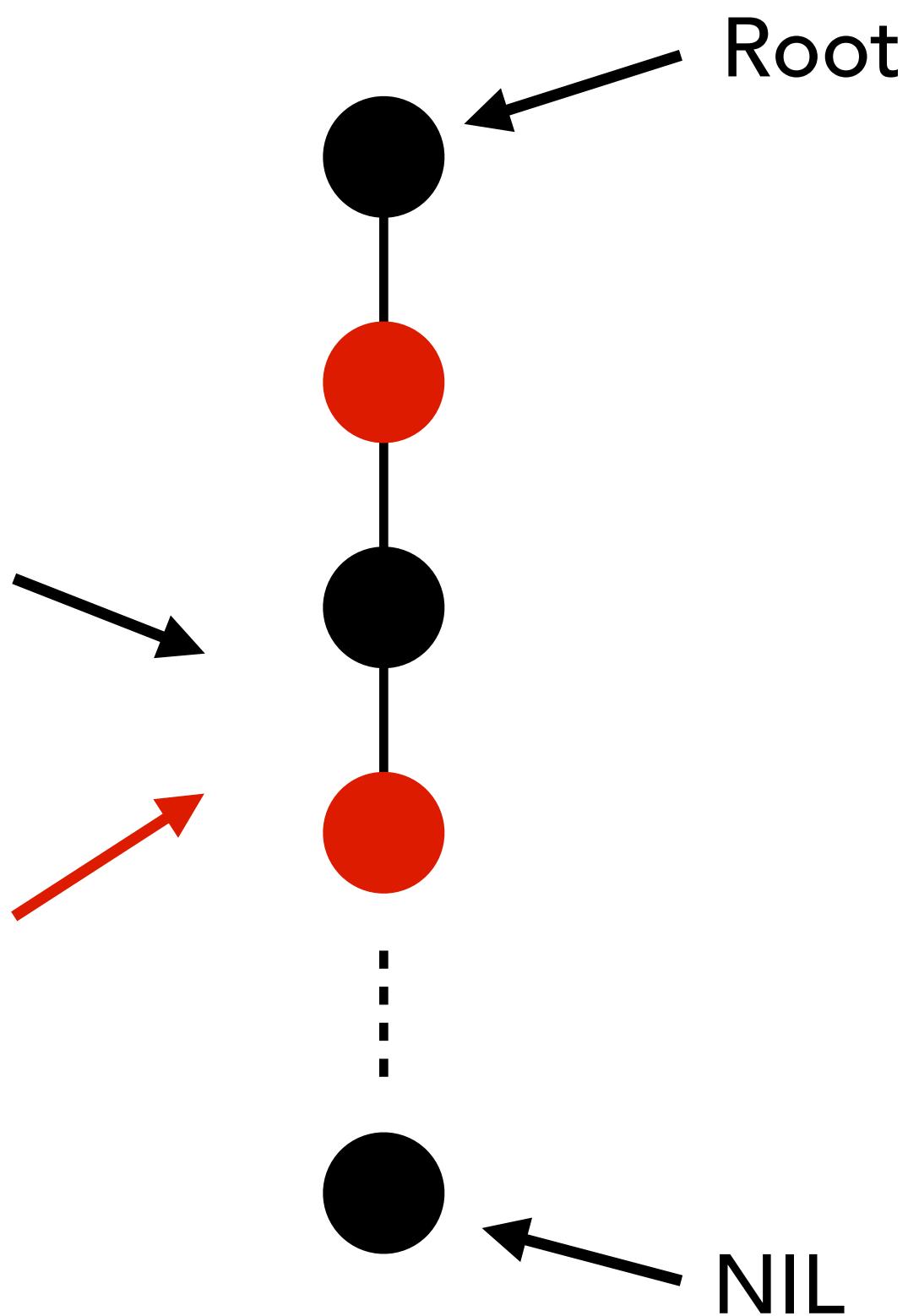
We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

Longest path of length h
from root to NIL.

At least how many
nodes will be black?



RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

$$\implies n \geq 2^{h/2} - 1$$

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

$$\implies n \geq 2^{h/2} - 1 \quad (\because \text{At least half of the nodes must be black on longest path})$$

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

$$\implies n \geq 2^{h/2} - 1 \quad (\because \text{At least half of the nodes must be black on longest path})$$

$$\implies n + 1 \geq 2^{h/2}$$

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

$$\implies n \geq 2^{h/2} - 1 \quad (\because \text{At least half of the nodes must be black on longest path})$$

$$\implies n + 1 \geq 2^{h/2}$$

$$\implies \lg(n + 1) \geq h/2$$

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

$$\implies n \geq 2^{h/2} - 1 \quad (\because \text{At least half of the nodes must be black on longest path})$$

$$\implies n + 1 \geq 2^{h/2}$$

$$\implies \lg(n + 1) \geq h/2$$

$$\implies h \leq 2 \lg(n + 1)$$

RB-Trees: Height Bound

Lemma: A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof: Let h be the height of root and the tree.

We know that subtree at root contains least $2^{bh(\text{root})} - 1$ internal nodes.

Therefore,

$$n \geq 2^{bh(\text{root})} - 1$$

$$\implies n \geq 2^{h/2} - 1 \quad (\because \text{At least half of the nodes must be black on longest path})$$

$$\implies n + 1 \geq 2^{h/2}$$

$$\implies \lg(n + 1) \geq h/2$$

$$\implies h \leq 2 \lg(n + 1)$$

RB-Trees: Operations

RB-Trees: Operations

We can perform the same operations on RB-Trees as we did on BSTs:

RB-Trees: Operations

We can perform the same operations on RB-Trees as we did on BSTs:

- **Insert** an element.

RB-Trees: Operations

We can perform the same operations on RB-Trees as we did on BSTs:

- **Insert** an element.
- **Delete** an element.

RB-Trees: Operations

We can perform the same operations on RB-Trees as we did on BSTs:

- **Insert** an element.
- **Delete** an element.
- **Search** for an element with the key k .

RB-Trees: Operations

We can perform the same operations on RB-Trees as we did on BSTs:

- **Insert** an element.
- **Delete** an element.
- **Search** for an element with the key k .
- **Minimum** or **Maximum** of the set.

RB-Trees: Operations

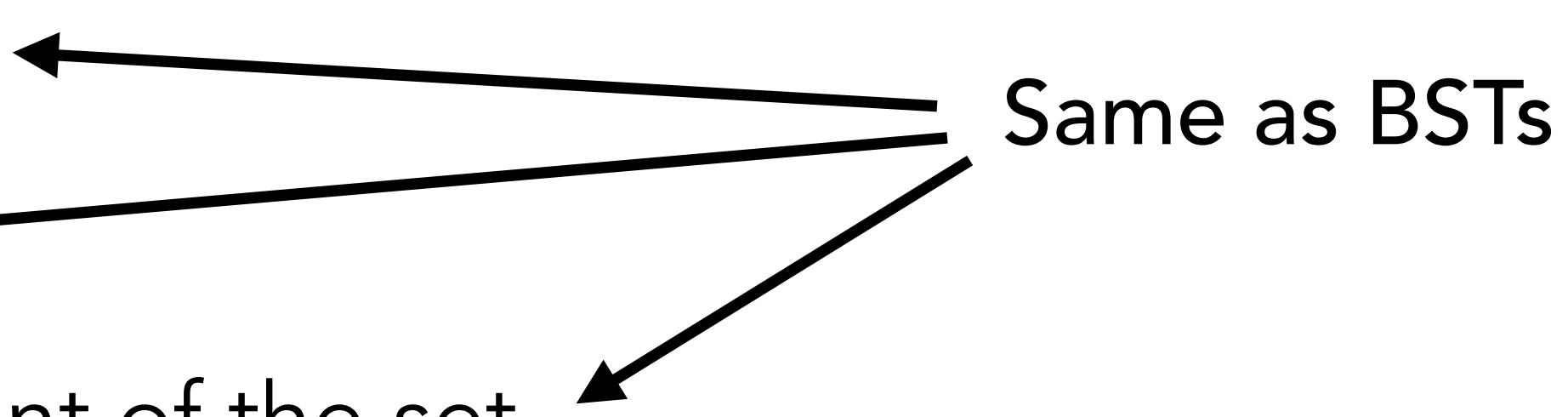
We can perform the same operations on RB-Trees as we did on BSTs:

- **Insert** an element.
- **Delete** an element.
- **Search** for an element with the key k .
- **Minimum** or **Maximum** of the set.
- **Successor** or **Predecessor** of an element of the set.

RB-Trees: Operations

We can perform the same operations on RB-Trees as we did on BSTs:

- **Insert** an element.
- **Delete** an element.
- **Search** for an element with the key k .
- **Minimum** or **Maximum** of the set.
- **Successor** or **Predecessor** of an element of the set.



Same as BSTs

RB-Trees: Operations

We can perform the same operations on RB-Trees as we did on BSTs:

- **Insert** an element.
- **Delete** an element.
- **Search** for an element with the key k .
- **Minimum** or **Maximum** of the set.
- **Successor** or **Predecessor** of an element of the set.

Require care

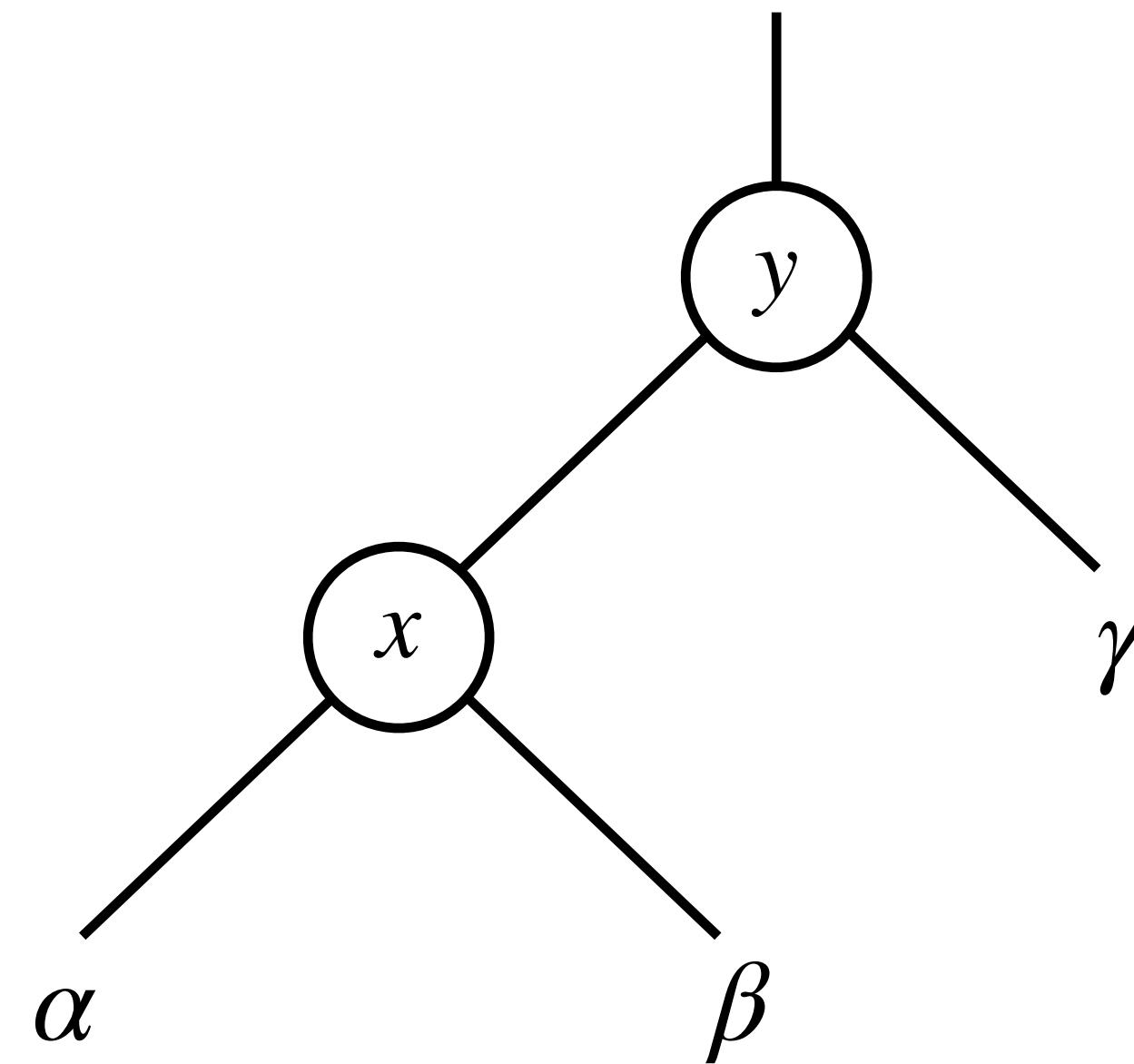
RB-Trees: Rotations

RB-Trees: Rotations

Rotations are basic operations useful in **Insertion** and **Deletion** on an **RB-tree**:

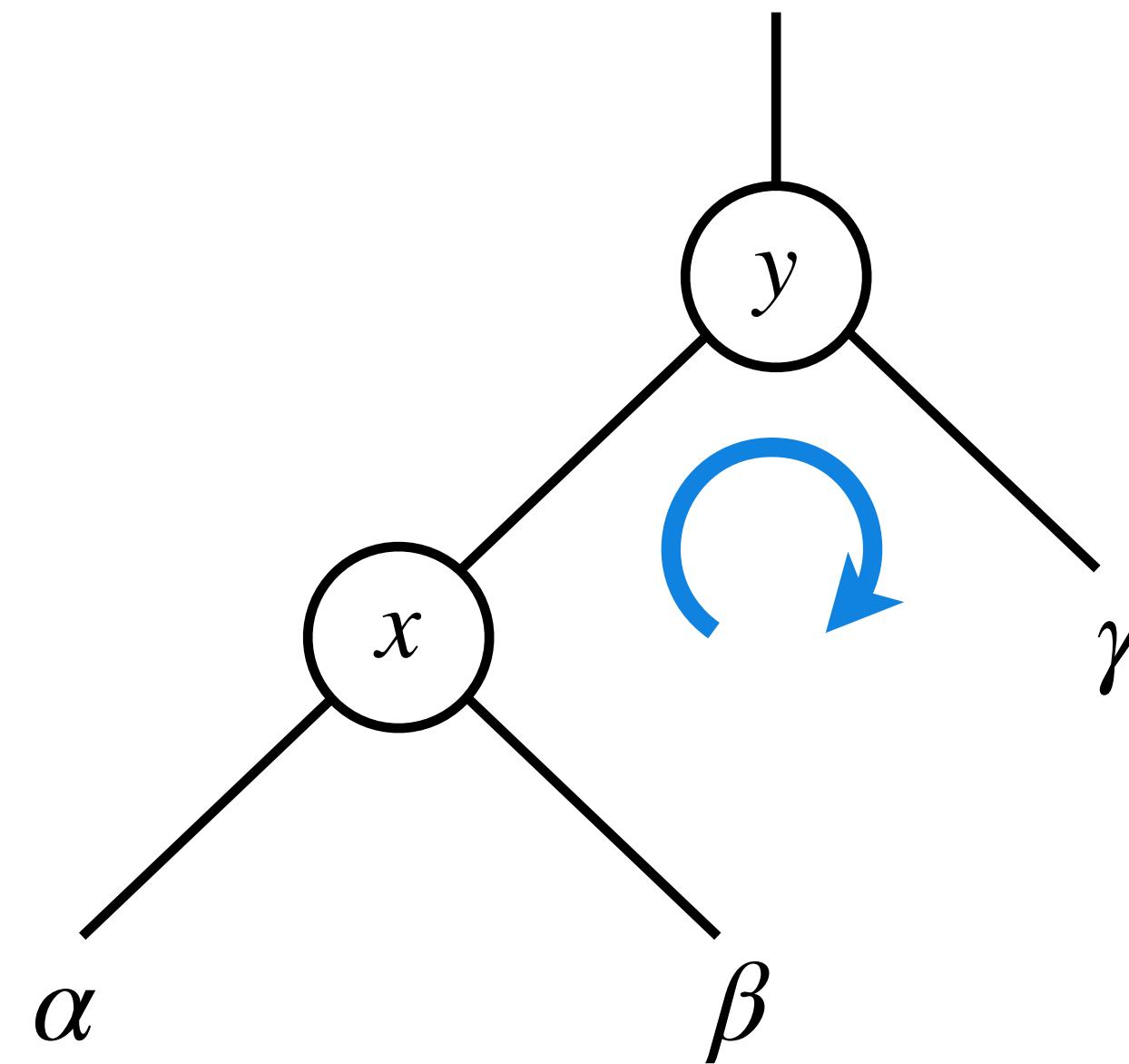
RB-Trees: Rotations

Rotations are basic operations useful in [Insertion](#) and [Deletion](#) on an RB-tree:



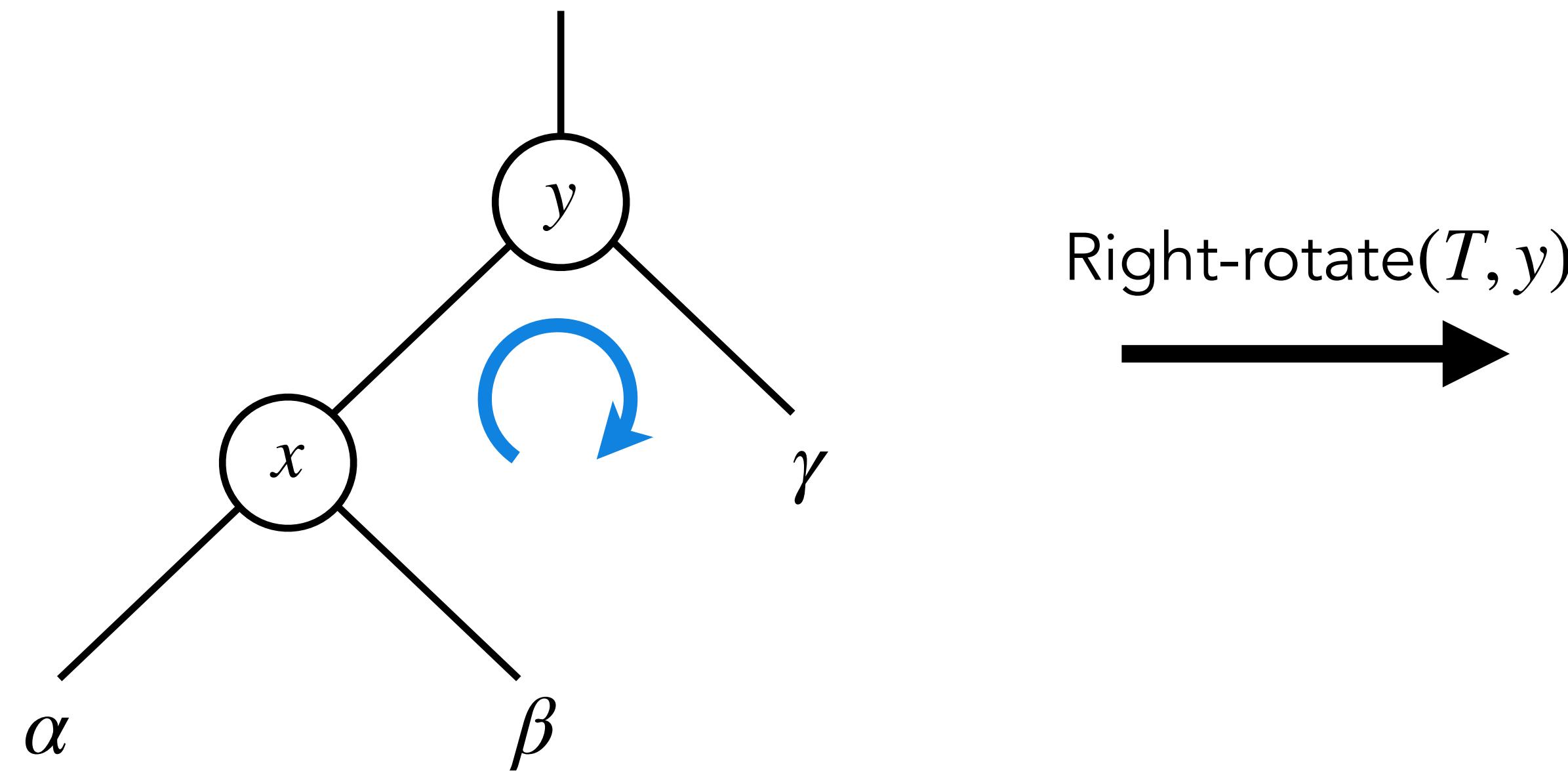
RB-Trees: Rotations

Rotations are basic operations useful in [Insertion](#) and [Deletion](#) on an RB-tree:



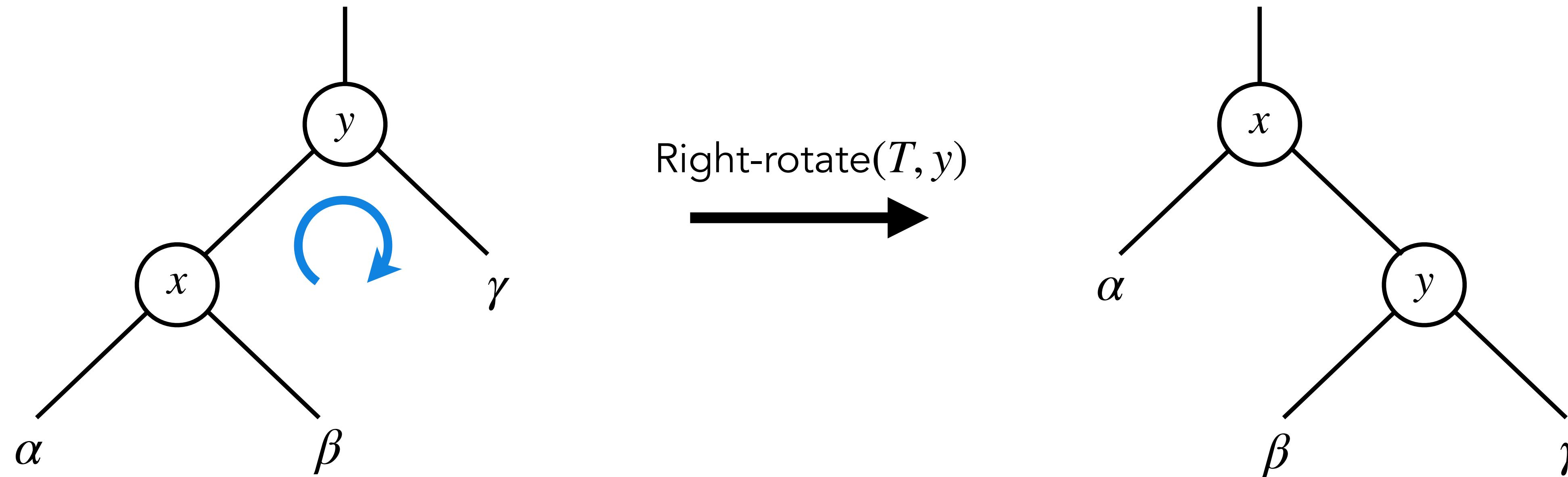
RB-Trees: Rotations

Rotations are basic operations useful in **Insertion** and **Deletion** on an RB-tree:



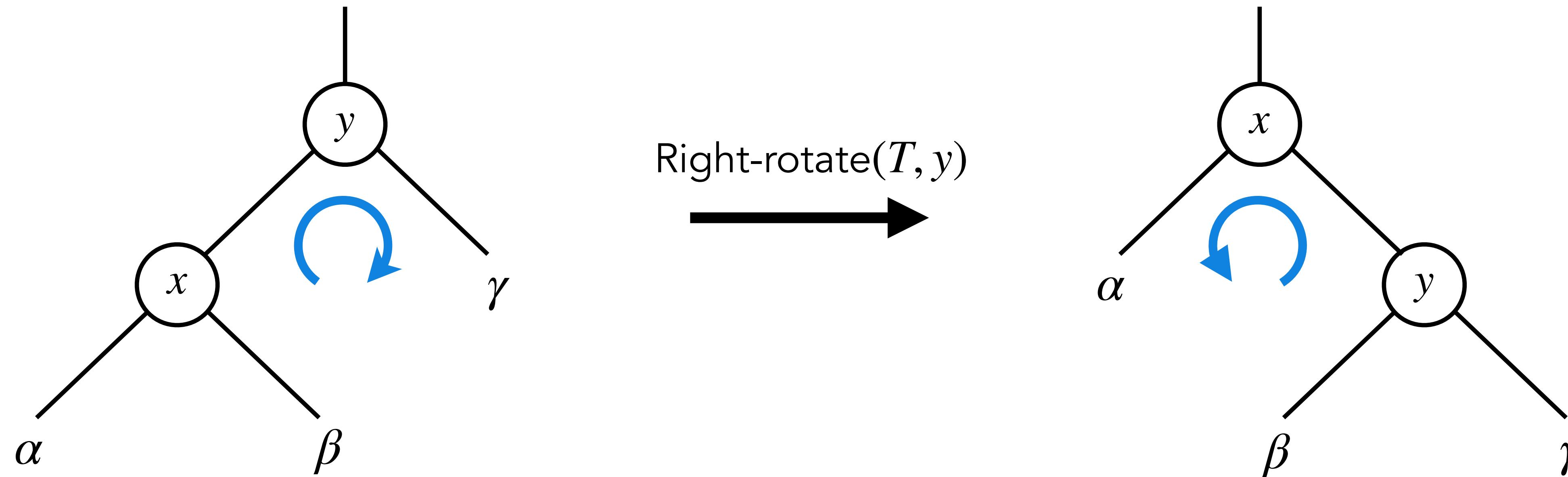
RB-Trees: Rotations

Rotations are basic operations useful in Insertion and Deletion on an RB-tree:



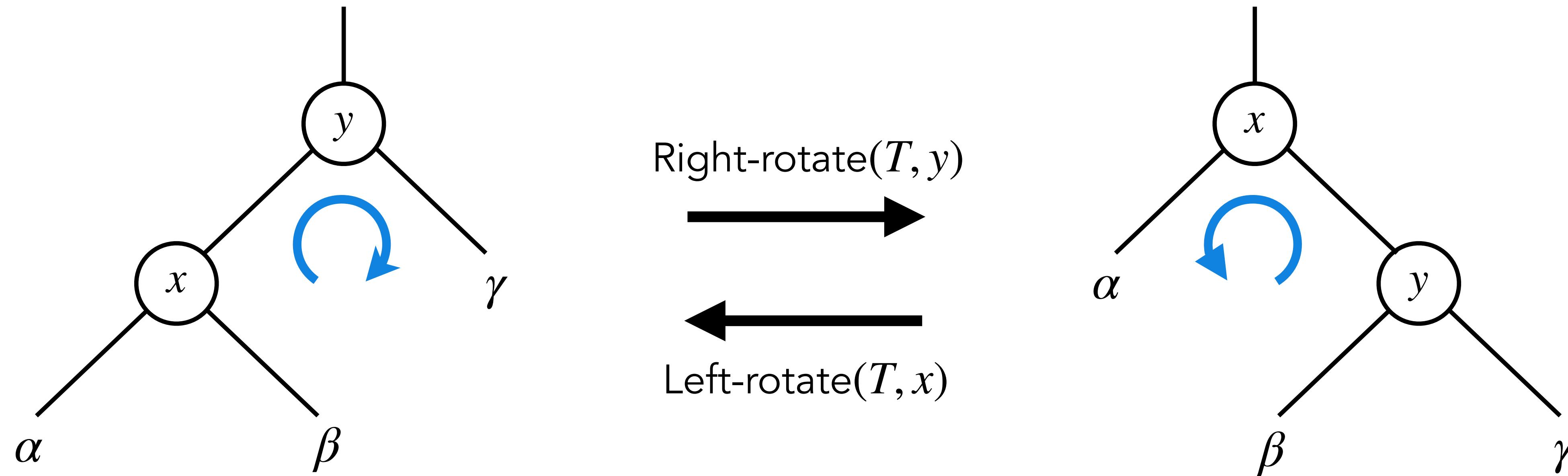
RB-Trees: Rotations

Rotations are basic operations useful in Insertion and Deletion on an RB-tree:



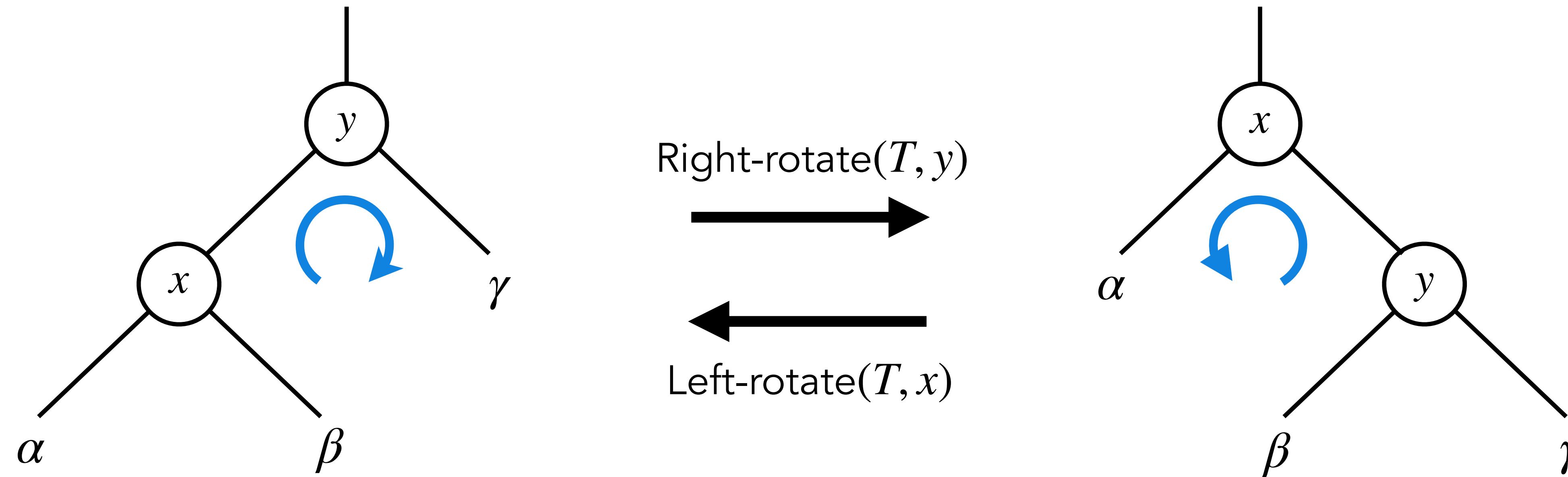
RB-Trees: Rotations

Rotations are basic operations useful in Insertion and Deletion on an RB-tree:



RB-Trees: Rotations

Rotations are basic operations useful in **Insertion** and **Deletion** on an RB-tree:



Note: Rotations do not disturb BST property and can be performed in constant time.

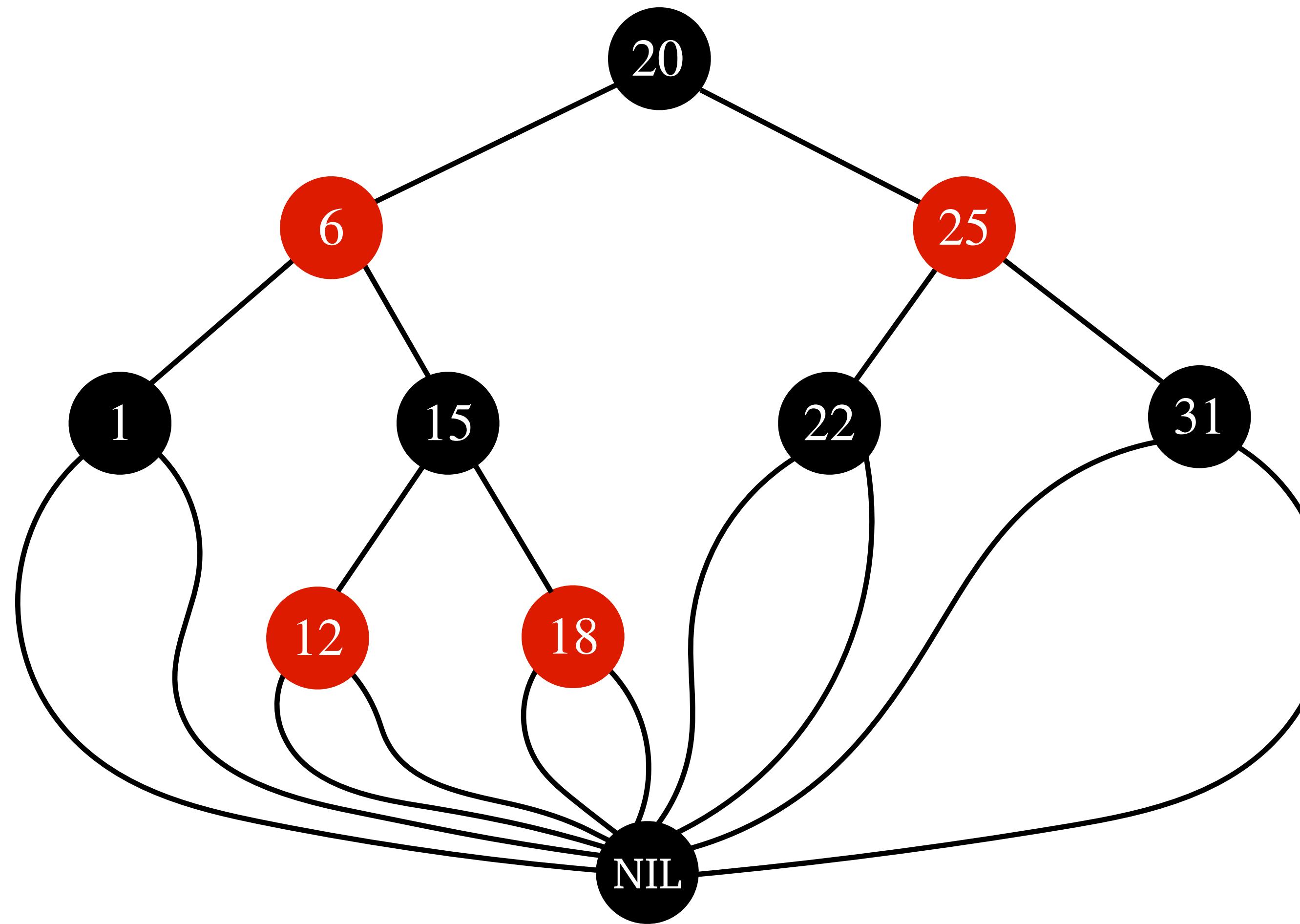
RB-Trees: Insertion

RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:

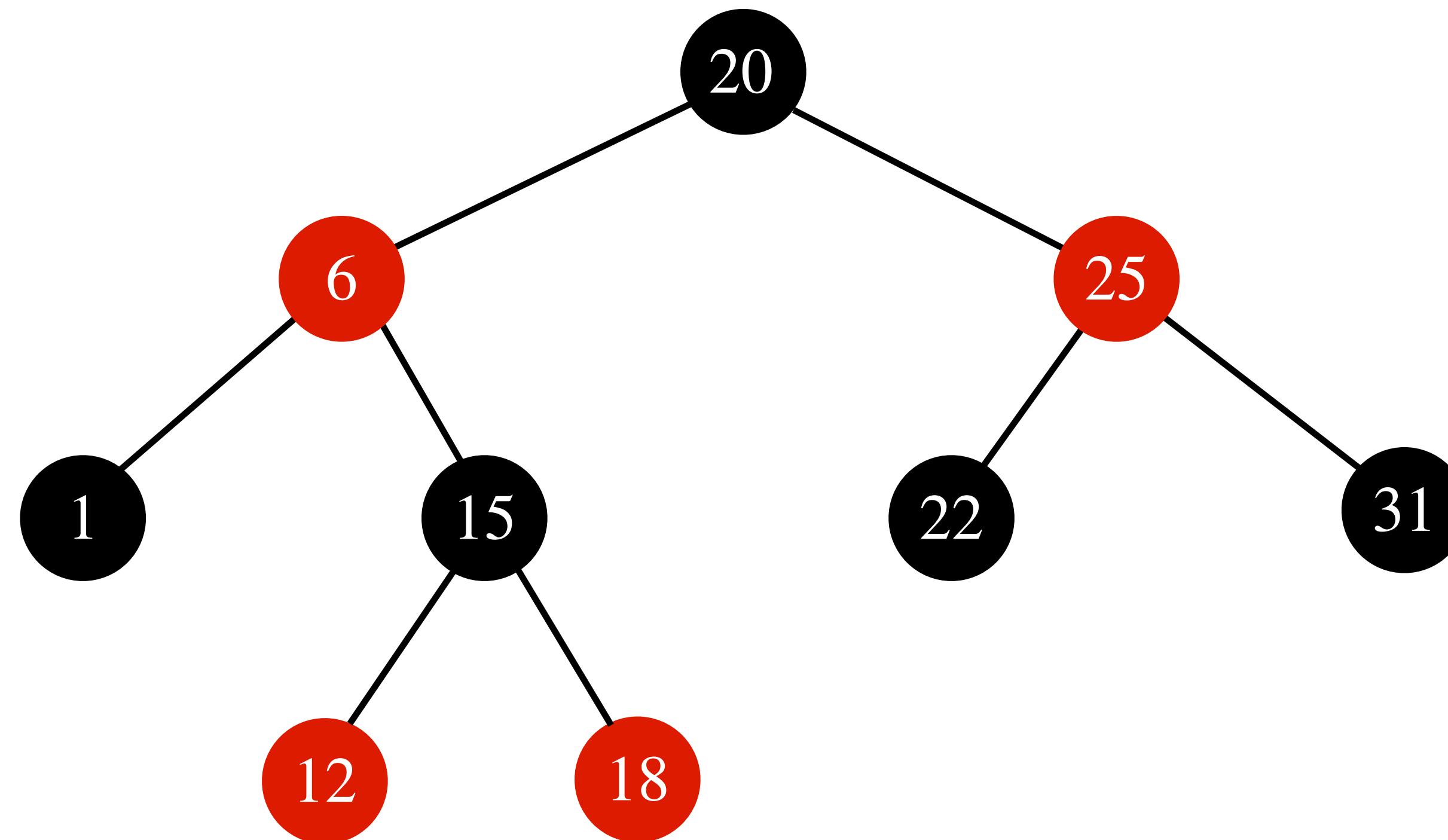
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



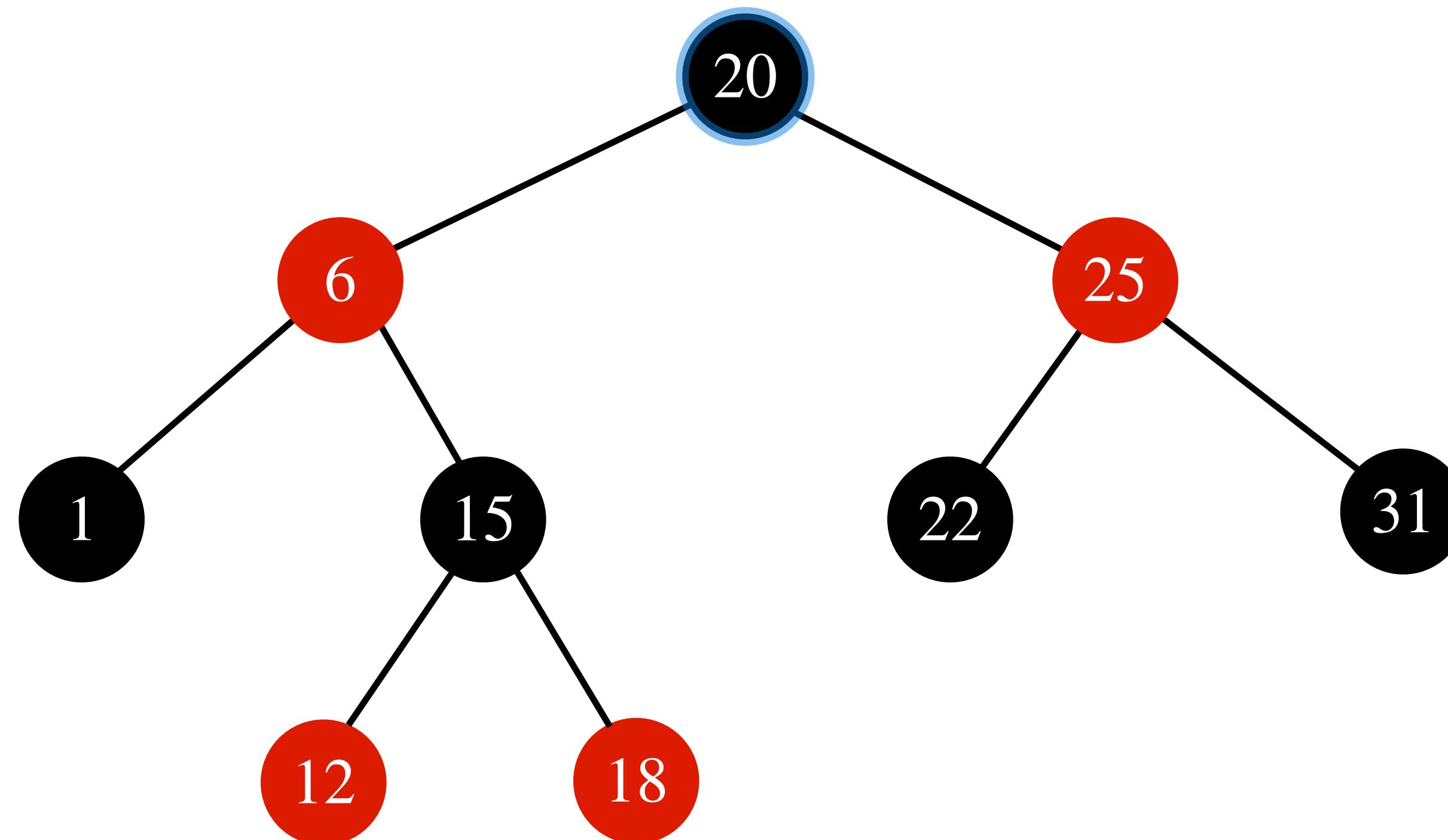
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



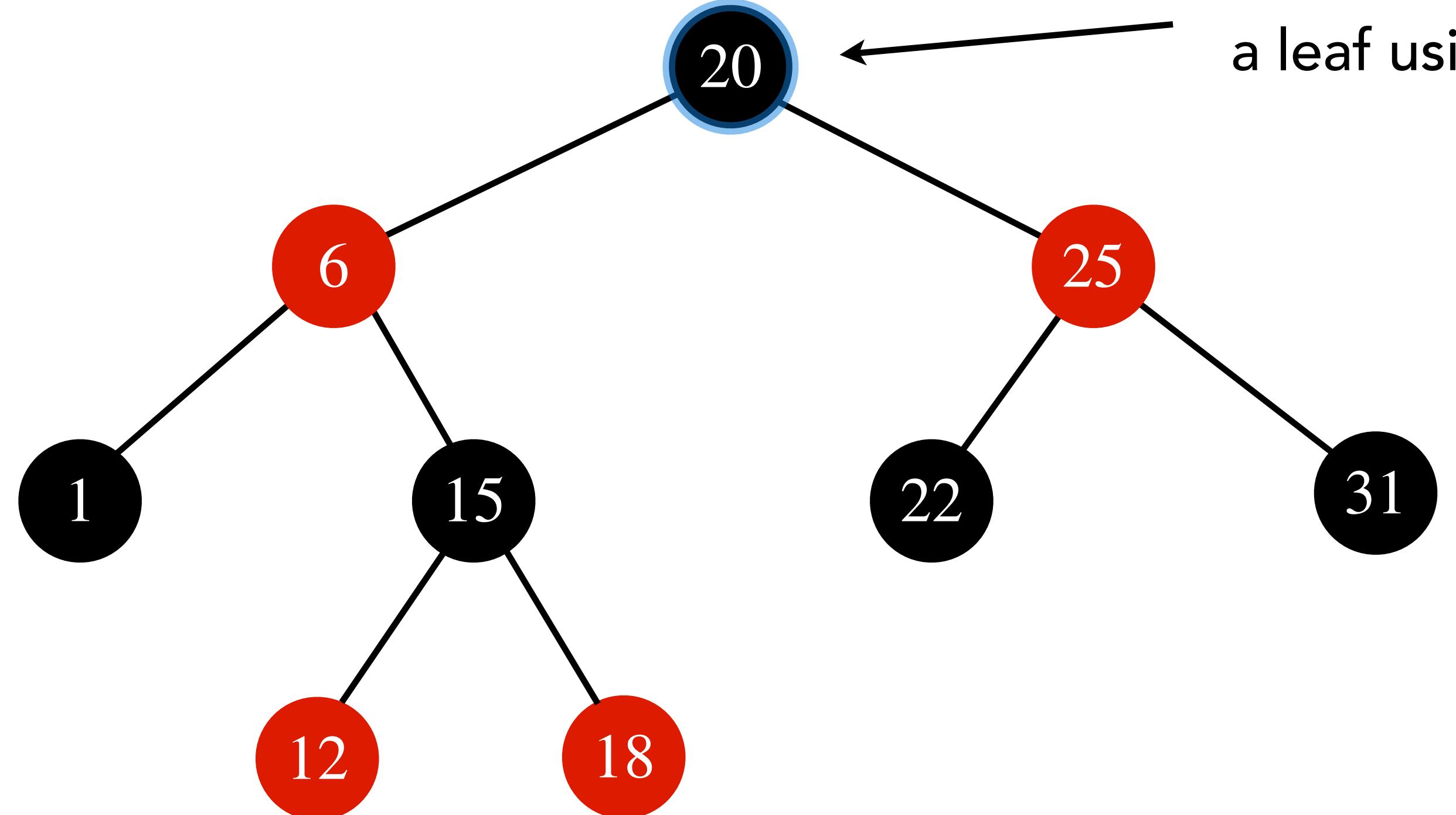
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



RB-Trees: Insertion

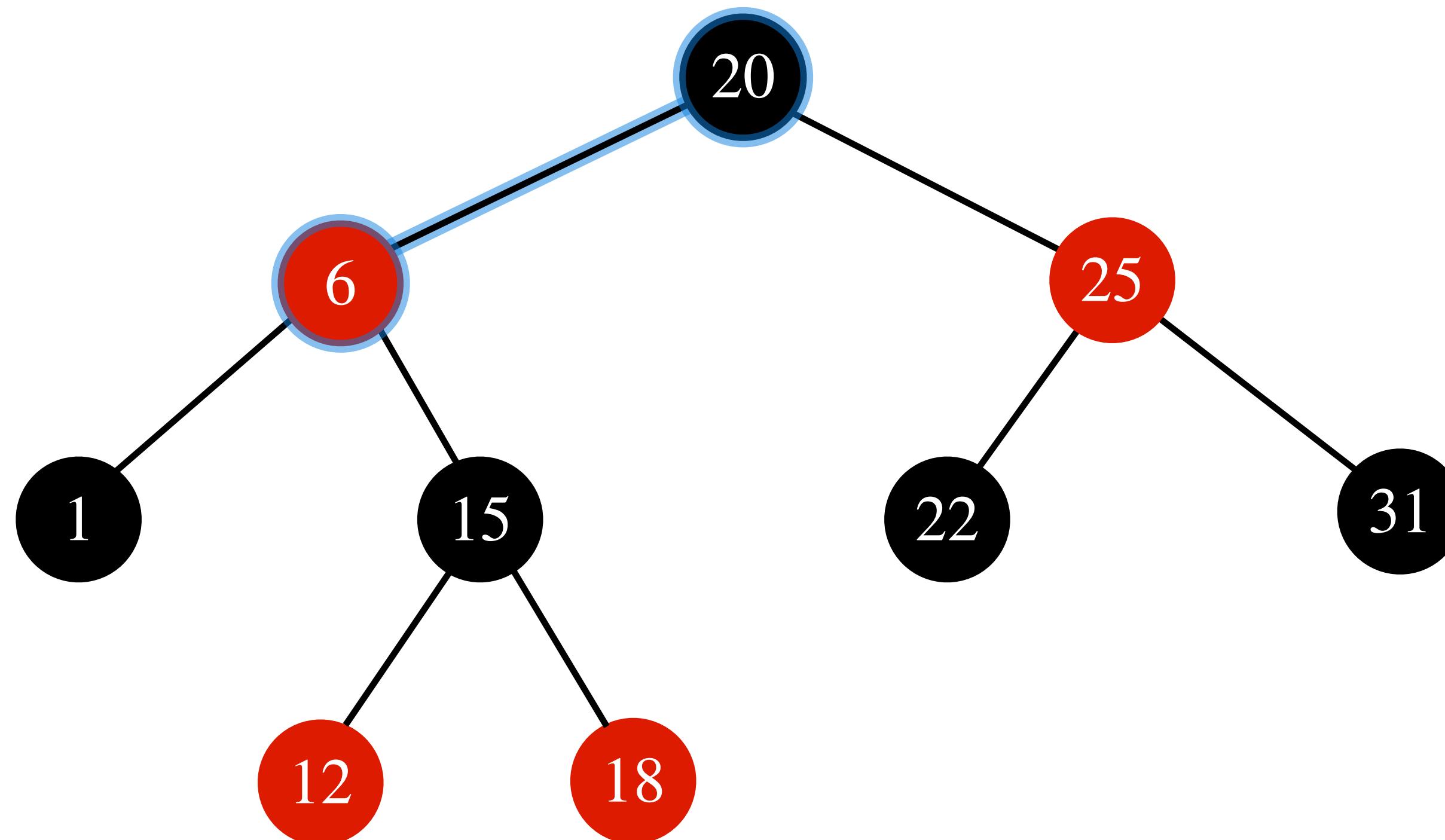
Suppose we want to insert 19 in the following RB-tree:



Start from the root and reach a leaf using BST properties

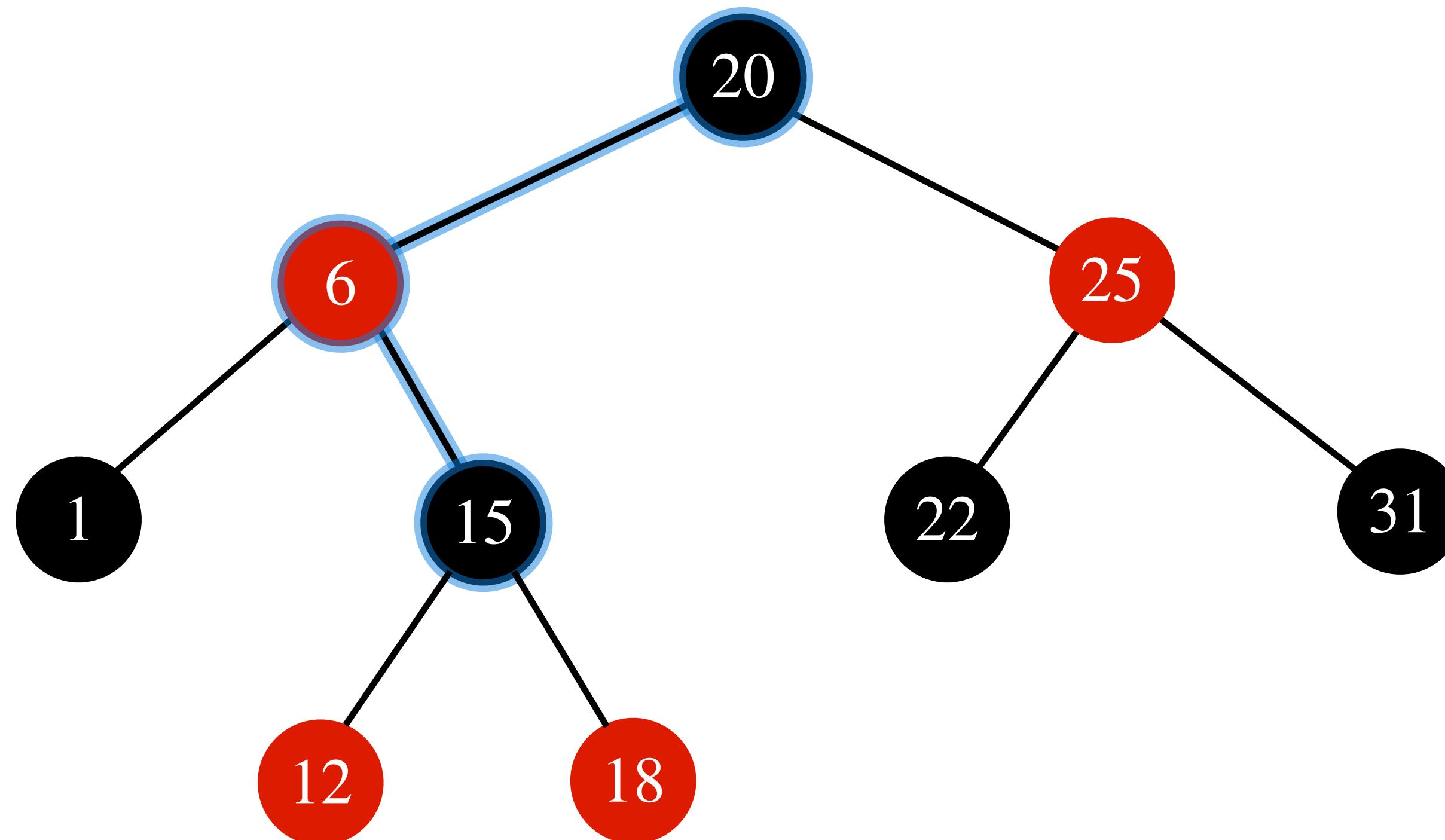
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



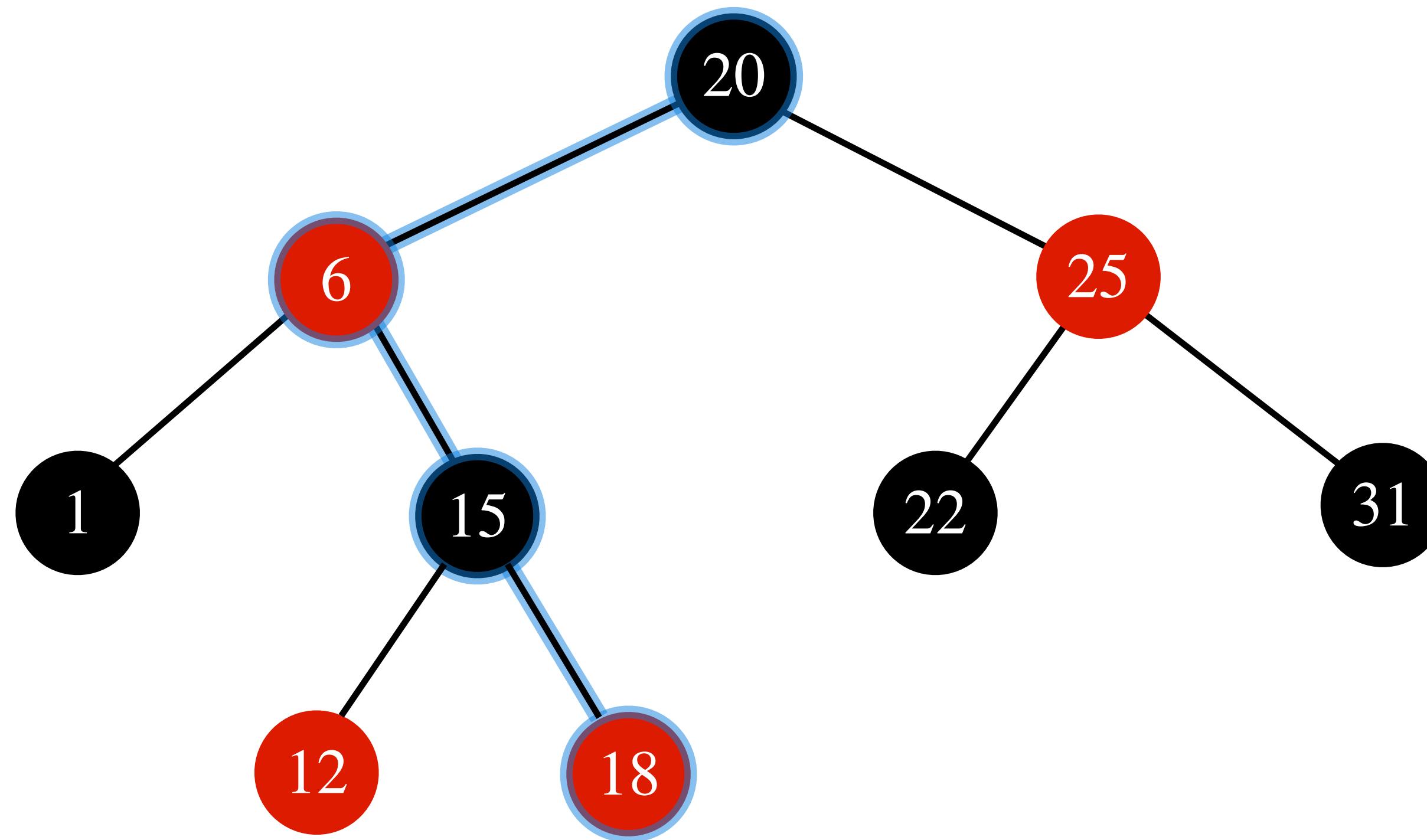
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



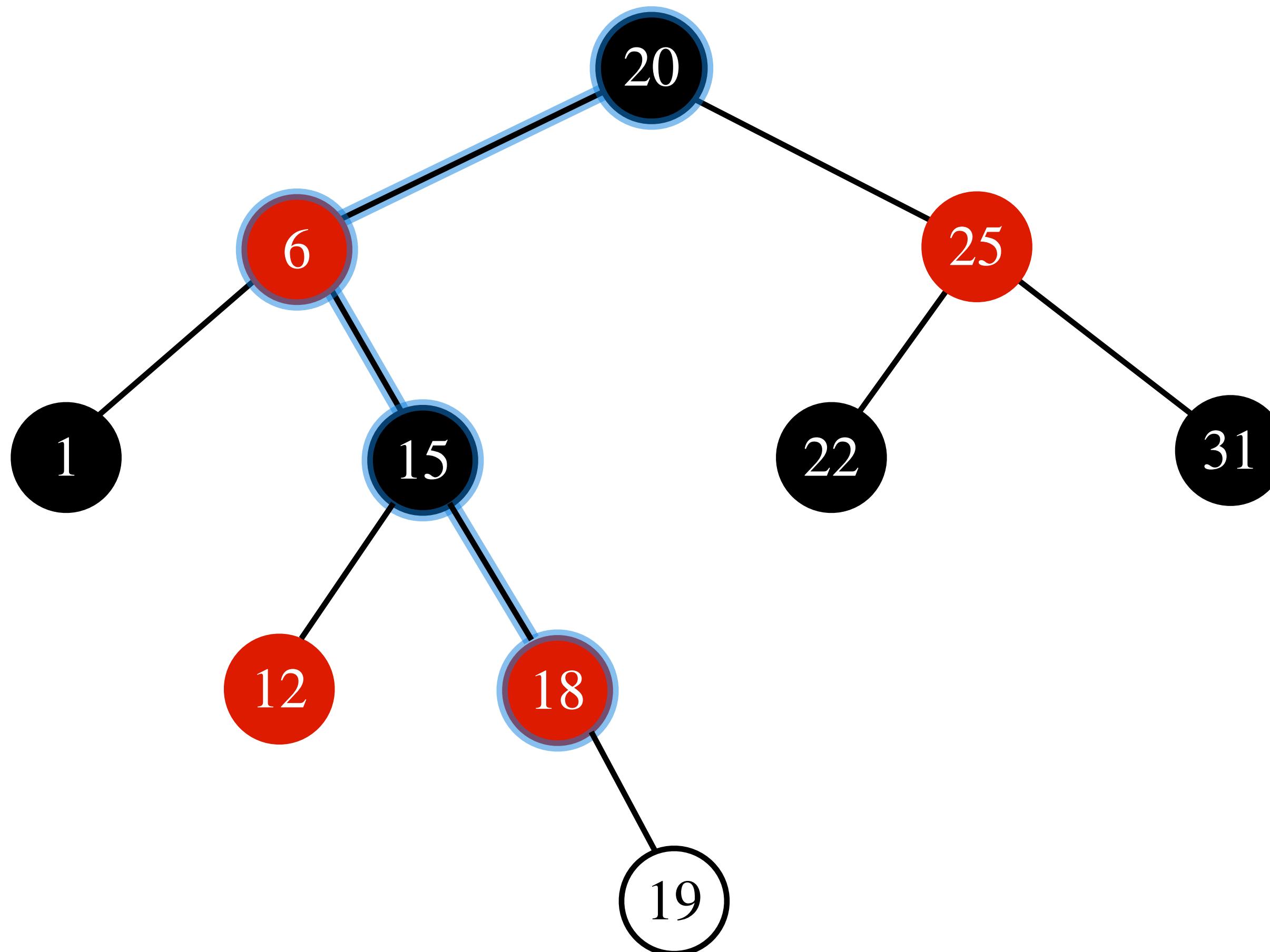
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



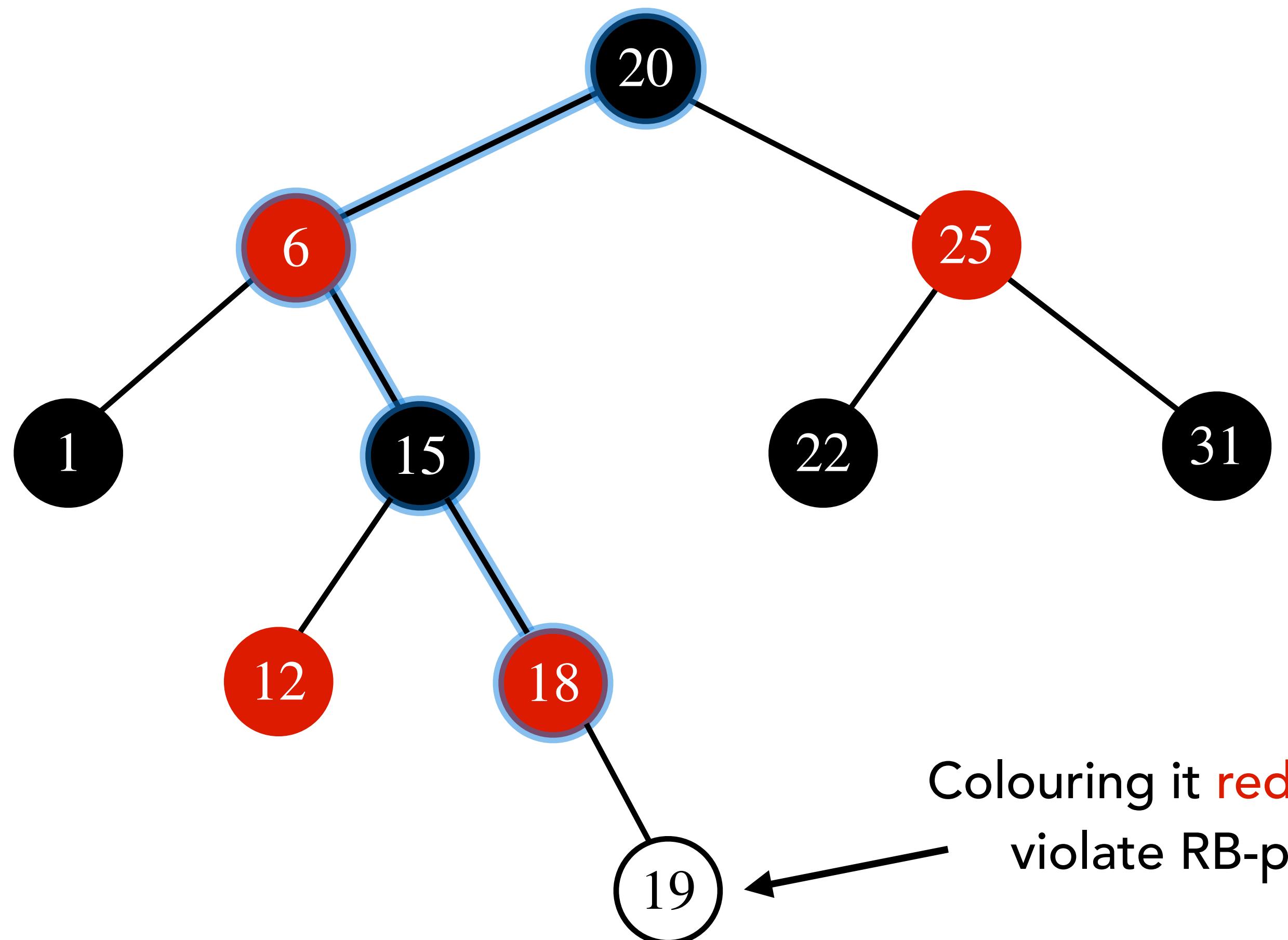
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



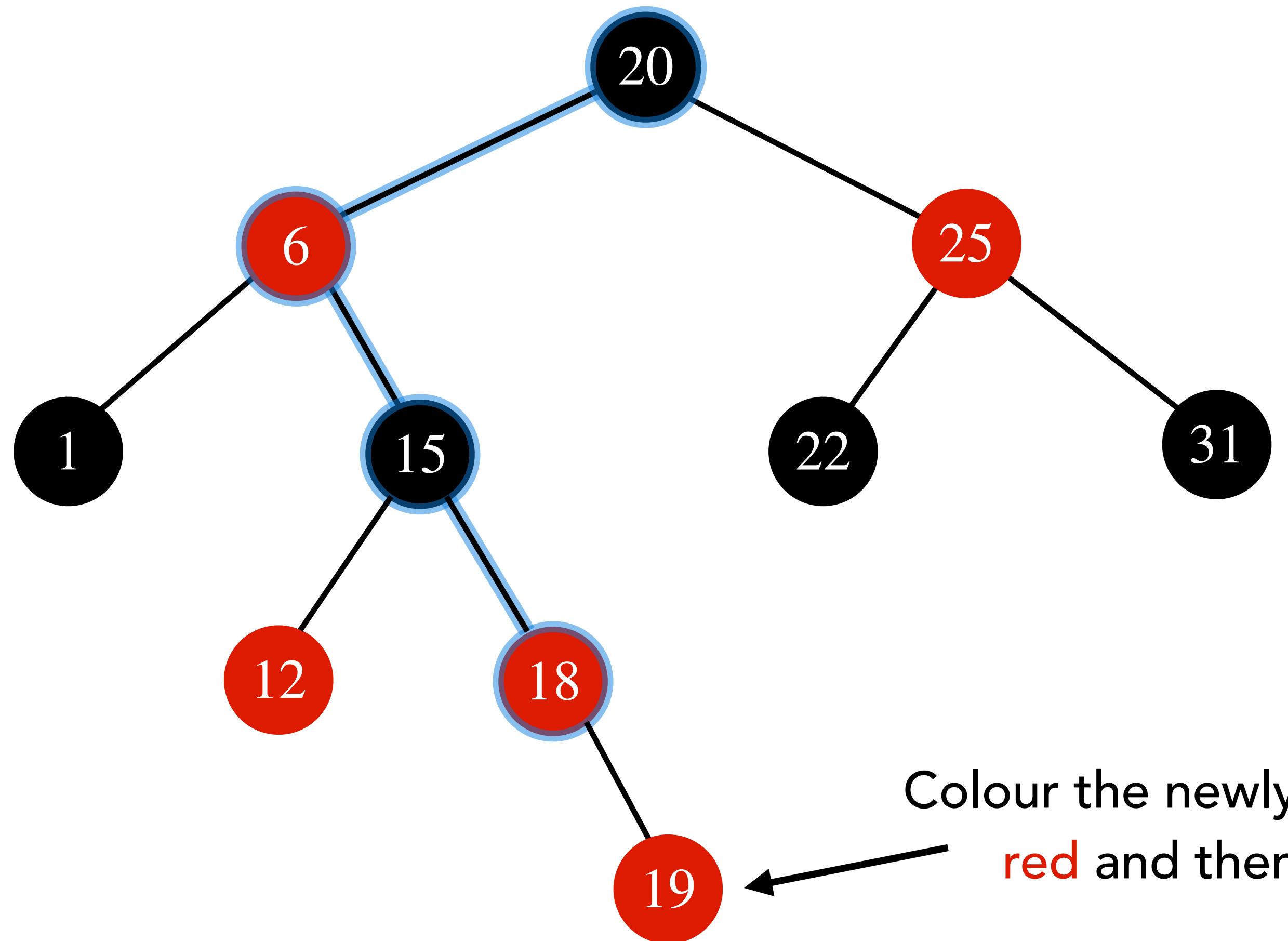
RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



RB-Trees: Insertion

Suppose we want to insert 19 in the following RB-tree:



RB-Trees: Insertion

RB-Trees: Insertion

Two stages of insertion:

RB-Trees: Insertion

Two stages of insertion:

- Insert the new node as it is done in a BST and colour the new node **red**.

RB-Trees: Insertion

Two stages of insertion:

- Insert the new node as it is done in a BST and colour the new node **red**.
- Do fix-ups as **parent** of the **new node** may also be a **red** node.