
Lecture 5

Red-Black Trees, Height Bound, Insertion

Source: Introduction to Algorithms, CLRS
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We can perform the same operations on RB-Trees as we did on BSTs:
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We can perform the same operations on RB-Trees as we did on BSTs:

• Insert an element.

• Minimum or Maximum of the set.

• Successor or Predecessor of an element of the set.

• Delete an element.

• Search for an element with the key .k
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Rotations are basic operations useful in Insertion and Deletion on an RB-tree:

x
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y

x

γ
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Right-rotate(T, y)

Left-rotate(T, x)

Note: Rotations do not disturb BST property and can be performed in constant time.
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violate RB-properties



RB-Trees: Insertion
Suppose we want to insert  in the following RB-tree:19
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Colour the newly inserted node 

red and then do fix-up.
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Two stages of insertion:

• Insert the new node as it is done in a BST and colour the new node red.



RB-Trees: Insertion

Two stages of insertion:

• Insert the new node as it is done in a BST and colour the new node red.

• Do fix-ups as parent of the new node may also be a red node.


